During the later stages of the SVG Mobile 1.1 specification it became obvious that there was a requirement to subset the SVG and XML DOM in order to reduce the burden on implementations. SVGT 1.2 adds new features to the uDOM, allowing for as much necessary functionality as possible, still being suitable for SVG Tiny implementations.
Furthermore, it should be possible to implement the uDOM on devices that support SVG Tiny 1.1 although, in this case, the scripting would be external to the SVG document (since SVG Tiny 1.1 does not support inline scripting).
The goal of the uDOM definition is to provide an API that allows access to initial and computed attribute and property values, to reduce the number of interfaces compared to the traditional SVG DOM, to reduce run-time memory footprint using necessary features of the core XML DOM, as well as the most useful SVG features (such as transformation matrices). A subset of the uDOM (corresponding to SVG Tiny 1.1) is already successfully implemented by various implementations of JSR-226. One goal of the uDOM is to keep compatibility with the JSR-226 uDOM subset.
The IDL definition for the uDOM is provided.
This appendix consists of the following parts:
The following sections provides an informative overview of the SVG uDOM's key features and constraints.
Note: Like other W3C DOM definitions, the SVG uDOM is programming-language independent. Although this appendix only contain ECMAScript and Javatm language examples, the SVG uDOM is compatible with other programming languages.
The SVG uDOM offers access to a
Document object which is the root for accessing other features. The way the
Document object becomes available depends on
the usage context. One way to gain access to the
Document object is to implement the
EventListenerInitializer2 interface. The SVG Tiny user agent will invoke the implementation's initializeEventListeners
method once the programming logic has been loaded and is ready to bind to the
document. The Document object
is sometimes accessible through other means, for example as the
global document variable in ECMAScript.
SVG uDOM only allows navigation of the element nodes in the DOM tree. Two options are available for navigating the hierarchy of elements:
getElementById
method on the Document interface.
parentNode
attribute on the Node interface.
The ElementTraversal interface provides
firstElementChild
,
lastElementChild
, previousElementSibling
and
nextElementSibling
, which are particularly suitable for constrained devices. These traversal mechanisms skip over intervening nodes between element nodes, such as text nodes which might only contain spaces, tabs and newlines.
SVG uDOM allows creation of new Elements.
String svgNS = "http://www.w3.org/2000/svg"; Element myRect = document.createElementNS(svgNS, "rect");
Element insertion is the ability to insert new elements to a document tree.
SVG uDOM allows the insertion of an Element.
var svgNS = "http://www.w3.org/2000/svg"; // Create a new <rect> element var myRect = document.createElementNS(svgNS, "rect"); // Set the various <rect> properties before appending ... // Add element to the root of the document var svgRoot = document.documentElement; svgRoot.appendChild(myRect); // Create a new <ellipse> element var myEllipse = document.createElementNS(svgNS, "ellipse"); // Set the various <ellipse> properties before insertion ... // Insert the ellipse before the rectangle svgRoot.insertBefore(myEllipse, myRect);
Element removal is the ability to remove an element from a document tree. SVG uDOM allows removal of Elements.
var myRect = ...; // See Element creation var myGroup = document.getElementById("myGroup"); myGroup.appendChild(myRect); ... myGroup.removeChild(myRect);
SVGT 1.2 uDOM supports two ways of accessing XML attributes and CSS properties; the standard way via getAttributeNS
and setAttributeNS
on the Element interface and via a new concept called Traits.
A trait is the typed value (e.g. a number, not just a string), associated with an element by an XML attribute or a CSS property.
The trait facilities in the SVG uDOM allow for strongly-typed access to
certain attribute and property values. For example, there is a
getFloatTrait(...)
method for getting an attribute or property value
directly as a float
. This contrasts the getAttributeNS
method which always returns a string. The trait facilities in the SVG uDOM are available on the
TraitAccess interface.
float width = myRect.getFloatTrait('width'); width += 10; myRect.setFloatTrait('width', width);
An important difference between getTraitNS
(and all other variants of getTrait
methods) and getAttributeNS
is that
getTraitNS
returns the computed attribute value but getAttributeNS
returns the specified attribute value (which might not exactly match the original specified value due to the possibility of user agent value normalization as described in Attribute Normalization).
<g fill="red">
<rect id="r1" x="1" y="1" width="5" height="5"/>
<rect id="r2" fill="inherit" x="1" y="1" width="5" height="5"/>
</g>
r1.getTraitNS(null, "fill")
returns "red" (or equivalent normalized form, see Attribute/Property Normalization).
r2.getTraitNS(null, "fill")
returns "red" (or equivalent normalized form, see Attribute/Property Normalization).
r1.getAttributeNS(null, "fill")
returns "".
r2.getAttributeNS(null, "fill")
returns "inherit".
A trait may be animated. To access the animated value, use getPresentationTrait
.
Event Listener Registration and Removal is the ability to add and remove new event listeners from a Document. SVG uDOM allows adding and removing EventListeners.
class MyEventListener implements EventListener { public void handleEvent(Event evt) { // Do whatever is needed here } } ... EventListener l = new MyEventListener(); SVGElement myRect = (SVGElement)document.getElementById("myRect"); //Listen to click events, during the bubbling phase myRect.addEventListenerNS("http://www.w3.org/2001/xml-events", "click", l, false, null); ... // Remove the click listener myRect.removeEventListenerNS("http://www.w3.org/2001/xml-events","click", l, false);
SVG uDOM allows code to start or end timed elements (i.e. elements implementing SVGTimedElement).
var animateColor = document.getElementById("myAnimation"); // Start the animation 2.5 seconds from now. animateColor.beginElementAt(2.5);
The SVG uDOM will use the same Java package names as the upcoming SVG 1.2 Full DOM (e.g. org.w3c.dom,org.w3c.dom.events, org.w3c.dom.svg). This allows Java applications which restrict themselves to the features in the SVG uDOM to also run in implementations that support the SVG 1.2 Full DOM.
A viewer implementing the uDOM is allowed to return normalized attribute values (defined in DOM 3) from getAttributeNS
and the various getTrait
methods (getTrait
, getTraitNS
, getFloatTrait
, ...) and getPresentationTrait
methods (getPresentationTrait
, getPresentationTraitNS
, getFloatPresentationTrait
, ...). Following is a list of possible attribute normalizations:
float
values in the SVG uDOM are in IEEE-754 binary floating-point arithmetic. This means that in addition to numerical values (e.g. 8
, 42.23
), values that cannot be converted to a numerical equivalent (e.g. strings like "100%"
or "auto"
) shall be represented as the special value NaN
(Not a Number). More specifically, the SVG uDOM uses a Signalling NaN, which means that in addition to representing this value as NaN
, an exception shall be raised.In the SVG uDOM, there are two alternative ways to access an element's
textual content. Text access via the TraitAccess interface is
available on all SVGElements. This was available in the SVG Tiny 1.1 uDOM (used in the JSR-226 specification) and is still available in order to keep backward compability. The SVG Tiny 1.2 uDOM specification introduces the textContent
attribute on the
Node interface as a more generic text access mechanism.
To access or set the text string value for an element via traits you
invoke getTrait()
or
setTrait()
on that element and pass #text
as
the name of the trait you want to get or set. For example,
MyTextElement.setTrait("#text", "Hello");
Text access via the #text mechanism must be supported on
Text Content,
'desc',
'title'
and 'metadata' elements. Text access
to other elements defined within this specification (see list of elements) is not
supported and an implementation should ignore any text on these elements.
The result of getting and setting text content via the #text
mechanism is exactly the same
as when using the textContent
attribute. Therefore the user should
be aware of the fact that styling by child
'tspan' elements (i.e. 'tspan' elements that are children of the element which text content is retrieved) will be lost if a text string is retrieved from an element and then set back again.
The #text
trait is included for compatibility with
JSR-226. It is recommended
that where compatibility with JSR-226 implementations is not required
content developers use textContent
instead as it is
more generally applicable and supports better compatibility with
DOM Level 3 Core [DOM3].
exception DOMException { unsigned short code; }; // ExceptionCode const unsigned short INDEX_SIZE_ERR = 1; const unsigned short DOMSTRING_SIZE_ERR = 2; const unsigned short HIERARCHY_REQUEST_ERR = 3; const unsigned short WRONG_DOCUMENT_ERR = 4; const unsigned short INVALID_CHARACTER_ERR = 5; const unsigned short NO_DATA_ALLOWED_ERR = 6; const unsigned short NO_MODIFICATION_ALLOWED_ERR = 7; const unsigned short NOT_FOUND_ERR = 8; const unsigned short NOT_SUPPORTED_ERR = 9; const unsigned short INUSE_ATTRIBUTE_ERR = 10; const unsigned short INVALID_STATE_ERR = 11; const unsigned short SYNTAX_ERR = 12; const unsigned short INVALID_MODIFICATION_ERR = 13; const unsigned short NAMESPACE_ERR = 14; const unsigned short INVALID_ACCESS_ERR = 15; const unsigned short VALIDATION_ERR = 16; const unsigned short TYPE_MISMATCH_ERR = 17;
This interface is a subset of the Node interface defined in DOM Level 3 Core. Node types that must be supported in the uDOM are Element nodes and Document nodes.
This subset does not support the NodeType and DocumentPosition definition groups, since the nodeType field and the compareDocumentPosition are not members of the subsetted interface.
Concerning textContent
, there is no requirement to create a Text node
on setting since this subset has no interface representing Text nodes. However, the
behaviour of textContent
must be as if the Text node described in the
the definition of textContent
had indeed been created.
An alternate way of accessing text content on elements defined within
the SVG specification is via the
getTrait("#text")
syntax.
interface Node { readonly attribute DOMString namespaceURI; readonly attribute DOMString localName; readonly attribute Node parentNode; readonly attribute Document ownerDocument; attribute DOMString textContent; Node appendChild(in Node newChild) raises(DOMException); Node insertBefore(in Node newChild, in Node refChild) raises(DOMException); Node removeChild(in Node oldChild) raises(DOMException); Node cloneNode(in boolean deep); };
namespaceURI
localName
parentNode
ownerDocument
textContent
appendChild
insertBefore
removeChild
cloneNode
This interface is a subset of the Element interface defined in DOM Level 3 Core.
Concerning setAttributeNS
, there is no requirement to take
the prefix
into account since neither the prefix
field
nor the Attr
interface are supported.
interface Element : Node, ElementTraversal { DOMString getAttributeNS(in DOMString namespaceURI, in DOMString localName) raises(DOMException); void setAttributeNS(in DOMString namespaceURI, in DOMString qualifiedName, in DOMString value) raises(DOMException); DOMString getAttribute(in DOMString name); void setAttribute(in DOMString name, in DOMString value) raises(DOMException); };
getAttributeNS
setAttributeNS
getAttribute
setAttribute
This interface is a subset of the Document interface defined in DOM Level 3 Core.
interface Document : Node { readonly attribute DOMImplementation implementation; Element createElementNS(in DOMString namespaceURI, in DOMString qualifiedName) raises(DOMException); readonly attribute Element documentElement; Element getElementById(in DOMString elementId); };
implementation
documentElement
createElementNS
getElementById
interface ElementTraversal { readonly attribute Element firstElementChild; readonly attribute Element lastElementChild; readonly attribute Element nextElementSibling; readonly attribute Element previousElementSibling; };
null
if this element has no child elements.
null
if this element has no child elements.
null
if this element has no element sibling
nodes that come after this one in the document tree.
null
if this element has no element sibling nodes that come before
this one in the document tree.
This interface is a subset of the DOMImplementation interface defined in DOM Level 3 Core.
interface DOMImplementation { };
This interface is a subset of the EventTarget interface defined in DOM Level 3 Events.
Please note that SVG Tiny 1.2 user-agents are not required
to support the capture phase, conformant SVG Tiny 1.2 content must not
make use of it. If an attempt to specify event operations on the capture
phase is made an SVG Tiny user-agent that does not support it must
ignore them as if addEventListener
had not been called.
As indicated in the DOM Level 3 Events definition for EventTarget, this interface is implemented by all Nodes.
Refer to the DOM Events Level 3 specification or the XML Events specification introduction for an explanation of the SVG event flow and the meaning of event targets, event current target, bubble and capture.
interface EventTarget { void addEventListener(in DOMString type, in EventListener listener, in boolean useCapture); void removeEventListener(in DOMString type, in EventListener listener, in boolean useCapture); void addEventListenerNS(in DOMString namespaceURI, in DOMString type, in EventListener listener, in boolean useCapture, in DOMObject evtGroup); void removeEventListenerNS(in DOMString namespaceURI, in DOMString type, in EventListener listener, in boolean useCapture); };
addEventListener
removeEventListener
addEventListenerNS
removeEventListenerNS
This interface is identical to the EventListener interface defined in DOM Level 3 Events.
interface EventListener { void handleEvent(in Event evt); };
handleEvent
This interface is a subset of the Event interface defined in DOM Level 3 Events. This subset does not support the PhaseType definition group.
For a list of supported event types see the Supported Events chapter.
interface Event { readonly attribute EventTarget target; readonly attribute EventTarget currentTarget; readonly attribute DOMString type; readonly attribute DOMString namespaceURI; readonly attribute boolean cancelable; readonly attribute boolean defaultPrevented; void stopPropagation(); void preventDefault(); };
target
currentTarget
type
namespaceURI
cancelable
defaultPrevented
stopPropagation
preventDefault
Event types that are MouseEvents: click, mousedown, mouseup, mouseover, mousemove, mouseout.
This interface is a subset of the MouseEvent interface defined in DOM Level 3 Events.
interface MouseEvent : UIEvent { readonly attribute long screenX; readonly attribute long screenY; readonly attribute long clientX; readonly attribute long clientY; readonly attribute unsigned short button; };
screenX
screenY
clientX
clientY
button
Event types that are MouseWheelEvents: mousewheel.
This interface is a subset of the MouseWheelEvent interface defined in DOM Level 3 Events.
interface MouseWheelEvent : MouseEvent { readonly attribute long wheelDelta; };
wheelDelta
textInput
.
This interface is a subset of the TextEvent interface defined in DOM Level 3 Events.
interface TextEvent : UIEvent { readonly attribute DOMString data; };
data
Event types that
are KeyboardEvents:
keydown
, keyup
.
This interface is a subset of the KeyboardEvent interface defined in DOM Level 3 Events.
interface KeyboardEvent : UIEvent { readonly attribute DOMString keyIdentifier; };
keyIdentifier
Event types that are
UIEvents:
DOMFocusIn
,
DOMFocusOut
,
DOMActivate
,
MouseEvent,
TextEvent,
KeyboardEvent,
This interface is a subset of the UIEvent interface defined in DOM Level 3 Events.
interface UIEvent : Event { readonly attribute long detail; };
detail
Many resources, such as raster images, movies and complex SVG content can take a substantial amount of time to download. In some use cases the author would prefer to delay the display of content or the beginning of an animation until the entire content of a file has been downloaded. In other cases, the author may wish to give the viewer some feedback that a download is in progress (e.g. a loading progress screen).
The ProgressEvent occurs when the user agent makes progress loading a resource (local or external) referenced by an xlink:href attribute.
The user agent must dispatch a
ProgressEvent at
the beginning of a load operation (i.e. just before starting to access the resource).
This event is of type SVGPreload
.
The user agent must dispatch a
ProgressEvent at
the end of a load operation (i.e. after load is complete and the user agent is
ready to render the corresponding resource). This event is of type
SVGPostload
.
The user agent may dispatch
ProgressEvents
between the SVGPreload
event
and the SVGPostload
events.
Such events are of type SVGLoadProgress
.
Event types
that are ProgressEvents:
SVGLoadProgress
,
SVGPreload
,
SVGPostload
.
interface ProgressEvent : Event { readonly attribute boolean lengthComputable; readonly attribute unsigned long loaded; readonly attribute unsigned long total; };
SVGPreload
or SVGPostload
event.
SVGLoadProgress
event,
it should specify the total number of bytes expected.
<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" xmlns:xlink="http://www.w3.org/1999/xlink"> <script type="application/ecmascript"><![CDATA[ function showImage(imageHref) { var image = document.getElementById('myImage'); image.setTraitNS("http://www.w3.org/1999/xlink", "href", imageHref); } function imageLoadStart (evt) { progressBar.setFloatTrait("width", 0); var loadingAnimation = document.getElementById('loadingAnimation'); loadingAnimation.beginElement(); } function imageLoadProgress (evt) { if ( evt.lengthComputable ) { var progressBar = document.getElementById('progressBar'); progressBar.setFloatTrait("width", 100*(evt.loaded/evt.total)); progressBar.setTrait( "visibility", "visible" ); } } function imageLoadComplete (evt) { var progressBar = document.getElementById('progressBar'); progressBar.setTrait( "visibility", "hidden" ); var loadingAnimation = document.getElementById('loadingAnimation'); loadingAnimation.endElement(); } ]]></script> <image xml:id="myImage" xlink:href="imageA.png" width="300" height="400"> <handler type="application/ecmascript" ev:event="preload"> imageLoadStart(evt); </handler> <handler type="application/ecmascript" ev:event="loadProgress"> imageLoadProgress(evt); </handler> <handler type="application/ecmascript" ev:event="postload"> imageLoadComplete(evt); </handler> </image> <rect width="120" height="30" y="400"> <handler type="application/ecmascript" ev:event="click"> showImage('imageB.png'); </handler> </rect> <animate xml:id="loadingAnimation" ... /> <rect visibility="hidden" xml:id="progressBar" ... /> </svg>
The ConnectionEvent is used to represent all events that may occur during the processing of connections, as described in the Connection interface. These events represent not only data received through a connection, but also the establishment and closing of a connection, as well as error conditions that may occur.
Event types that are
ConnectionEvents:
SVGConnectionConnected
,
SVGConnectionDataSent
,
SVGConnectionDataReceived
,
SVGConnectionClosed
,
SVGConnectionError
.
interface ConnectionEvent : Event { const unsigned short NO_ERR = 0; const unsigned short NETWORK_ERR = 1; readonly attribute unsigned short errorCode; readonly attribute sequence<octet> receivedData; };
errorCode
field is set to this value so that it can be distinguished from error related events.
errorCode
field set to this value.
null
.
interface ElementTimeControl { void beginElementAt(in float offset); void beginElement(); void endElementAt(in float offset); void endElement(); };
in float offset | The offset in seconds at which to begin the element. |
beginElementAt(0)
.
in float offset | The offset in seconds at which to end the element. |
endElementAt(0)
.
TimeEvent is an interface used to provide contextual information for events fired by animations in the document. It is a subset of the TimeEvent interface defined in SMIL Animation.
Event that is fired by all Timed Elements.
Event types that are TimeEvents: beginEvent
, endEvent
, repeatEvent
.
interface TimeEvent : Event { readonly attribute long detail; };
interface Global { };
exception GlobalException { unsigned short code; }; // ExceptionCode const unsigned short NOT_CONNECTED_ERR = 1; const unsigned short ENCODING_ERR = 2; const unsigned short DENIED_ERR = 3; const unsigned short UNKNOWN_ERR = 4;
The Connection
interface provides an API for socket-level
communication. The socket must be set up to use the TCP
protocol. A Connection object is created using the
SVGGlobal
interface method createConnection()
.
Since it inherits from the EventTarget interface, it is possible to register event listeners on the Connection interface in order to handle the various types of ConnectionEvent that are dispatched during the processing of connections.
After a connection has been established the Connection object
must dispatch a ConnectionEvent with the type SVGConnectionConnected
to event handlers
registered on that Connection object.
After data has been successfully sent, the Connection object
must dispatch a ConnectionEvent with the type SVGConnectionDataSent
to event handlers
registered on that Connection object. The event is
dispatched exactly once for each call to send()
.
When data has been received, the Connection object must
dispatch a ConnectionEvent with the type SVGConnectionDataReceived
to event handlers
registered on that Connection object.
In the circumstance that the connection is closed by any
peer, a ConnectionEvent with the type SVGConnectionClosed
must be dispatched to event handlers
registered on that Connection object.
If an error occurs, a ConnectionEvent with the type SVGConnectionError
must be
dispatched to event handlers
registered on that Connection object. This must cause the connection
to be closed.
Data must be sent and received over the connection as a binary stream of octets.
The connect()
and send()
methods work asynchronously
(non-blocking). Multiple calls to send()
can be made in
sequence without waiting for the SVGConnectionDataSent
event
to have been dispatched.
Each set of data must be queued and sent, in FIFO order, by
the UA. Each send()
will result in a SVGConnectionDataSent
event except when an error occurs. A user-agent may arbitrary limit the size of the queue
of events that it can hold at any one time. Should more events require to be queued than
the user-agent's limit a GlobalException
of type DENIED_ERR must be raised, the entirety of the queue discarded, and the connection closed.
The send()
method must raise an GlobalException of type NOT_CONNECTED_ERR exception if the connection
is not open at the time the call is made. All other errors are treated asynchronously, in
the form of connectionError events.
interface Connection : EventTarget { readonly attribute boolean connected; void connect(in DOMString host, in unsigned short port) raises(GlobalException); void send(in sequence<octet> data) raises(GlobalException); void close(); };
true
if a connection is currently open,
and false
otherwise.
Cause a connection to be open to the provided host and port, where the host
may be either a domain name or an IP address. If the connection fails to be
established, a GlobalException of type NOT_CONNECTED_ERR must be raised.
Once the connection is established, the connected
field must be set to true
.
For security reasons, user-agents are strongly encouraged to restrict the ways in which a connection can be established both for both host and ports. If the user-agent elects to deny the connection based on these restrictions, a GlobalException of type DENIED_ERR must be raised.
in DOMString host | A domain name or IP address that the TCP connection is to be established to. |
in unsigned short port | The port to which the TCP connection is being established. |
GlobalException |
NOT_CONNECTED_ERR: Raised if the connection fails.
|
This method sends the data over the connection. It transmits a sequence of octets
without modifying it in any way. A string can be transmitted after having been
converted to a sequence of octets using the stringToBinary
method on the
SVGGlobal interface.
in sequence<octet> data data | The data to send. |
GlobalException |
NOT_CONNECTED_ERR: Raised if the connection is not open when send is called.
|
This method causes the connection to be closed. It is asynchronous
and any data queued for transmission using the send()
method but not
yet successfully transmitted must be sent before the connection is
effectively closed. However, any call to send()
occurring after
close()
has been called will raise an exception as if the connection
had already been closed, and the connected
field must be set to
false
immediately.
The Timer interface provides an API for scheduling a one time or repetitive event. A Timer object is always either in the running (attribute running is true
) or waiting (attribute running is false
) state. After each interval of the timer, an Event of type SVGTimer
is triggered.
SVGTimer
events are triggered only when the timer
is in the running
state. The SVGTimer
event is limited to the target phase. Since Timer
is an EventTarget, EventListeners can be registered on it using addEventListener with SVGTimer
as the event type. Event listeners can access their corresponding Timer object through the event object's target property.
Timer instances are created using the createTimer
method of the SVGGlobal
interface.
interface Timer : events::EventTarget { attribute long delay; attribute long repeatInterval; readonly attribute boolean running; void start(); void stop(); };
This attribute specifies the time remaining in milliseconds until the next event is fired. When the Timer is in the running
state this attribute is dynamically updated to reflect the remaining time in the current interval. When the Timer is waiting
the delay reflects the time that remained when stopped. Getting the delay attribute returns the current value, i.e. a snapshot value of the remaining delay. After delay period has passed while the object is in the running
state, the Timer
object will trigger an Event
of type SVGTimer
. The delay will then be updated with the repeatInterval
value and a new count down will start. Setting the delay resets the current interval to the new value. If this attribute is 0
, it means that the event will be triggered as soon as possible. Assigning a negative value is equivalent to calling the stop()
method. The initial value is set through the initialInterval parameter in the createTimer
method on the SVGGlobal
interface, and defines the first interval of the Timer
.
This attribute specifies in milliseconds the interval for each repeat of the Timer, i.e. each timer interval subsequent to the initial interval. The initial value of this attribute is set through the repeatInterval
parameter in the createTimer
method on the SVGGlobal
interface. Assigning a negative value disables the repetitive triggering of the event making it a one time timer which triggers an event after the delay
.
Timer state. Value is true
if the timer is running, false
if the timer is waiting. Note that the repeatInterval
and delay
properties can be non-negative if the timer is stopped (but if delay
is negative, the timer is stopped).
Changes the Timer state into running
. If the timer is already in the running
state, it has no effect. Initially the timer is waiting
, and must be started with this method. If the timer delay
had a negative value when started, for example if the time had been stopped by setting the delay to a negative value, the delay value is reset to repeatInterval
when the this method is called.
This interface is identical to SVGException interface defined in SVG 1.1.
exception SVGException { unsigned short code; }; // ExceptionCode const unsigned short SVG_WRONG_TYPE_ERR = 0; const unsigned short SVG_INVALID_VALUE_ERR = 1; const unsigned short SVG_MATRIX_NOT_INVERTABLE = 2;
interface SVGDocument : Document, EventTarget { readonly attribute SVGGlobal global; };
This interface is a subset of the SVGElementInstance interface defined in SVG 1.1.
interface SVGElementInstance : EventTarget { readonly attribute SVGElement correspondingElement; readonly attribute SVGElement correspondingUseElement; };
correspondingElement
correspondingUseElement
<svg version="1.2" baseProfile="tiny" width="640" height="480" viewBox="0 0 640 480" xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ev="http://www.w3.org/2001/xml-events"> <defs> <rect xml:id="r1" width="90" height="65"/> </defs> <use xlink:href="#r1" x="50" y="200" fill="red"/> <use xlink:href="#r1" x="250" y="200" fill="blue"/> <use xlink:href="#r1" x="450" y="200" fill="green"/> <rect xml:id="r2" x="250" y="50" width="90" height="65"/> <ev:listener observer="r1" event="ev:click" handler="#handler"/> <handler xml:id="handler" type="application/ecmascript">changeColor(evt);</handler> <script type="application/ecmascript"> <![CDATA[ var target = document.getElementById("r2"); function changeColor(evt) { var useElement = evt.currentTarget.correspondingUseElement; target.setRGBColorTrait("fill", useElement.getRGBColorTrait("fill")); } ]]> </script> </svg>
This interface represents the 'svg' element in the (SVG) document tree.
The uDOM attributes currentScale
,
currentRotate
and
currentTranslate
are combined to form a user agent transformation which is applied at the outermost
level on the SVG document (i.e. outside the
'svg' element) if
"magnification" is enabled (i.e.
'zoomAndPan'
attribute is set to magnify). Their values
can potentially be modified through user-agent specific UI. User agent transformation
can be obtained by multiplying the matrix
[currentScale 0 currentTranslate.x] [cos(currentRotate) -sin(currentRotate 0] [ 0 currentScale currentTranslate.y] by [sin(currentRotate) cos(currentRotate) 0] [ 0 0 1 ] [ 0 0 1]
i.e. (translate, then scale, then rotate the coordinate system). The reference point for scale and rotate operations is the origin (0, 0).
interface SVGSVGElement : SVGLocatableElement, SVGTimedElement { const unsigned short NAV_AUTO = 1; const unsigned short NAV_NEXT = 2; const unsigned short NAV_PREV = 3; const unsigned short NAV_UP = 4; const unsigned short NAV_UP_RIGHT = 5; const unsigned short NAV_RIGHT = 6; const unsigned short NAV_DOWN_RIGHT = 7; const unsigned short NAV_DOWN = 8; const unsigned short NAV_DOWN_LEFT = 9; const unsigned short NAV_LEFT = 10; const unsigned short NAV_UP_LEFT = 11; attribute float currentScale; attribute float currentRotate; readonly attribute SVGPoint currentTranslate; readonly attribute SVGRect viewport; float getCurrentTime(); void setCurrentTime(in float seconds); SVGMatrix createSVGMatrixComponents(in float a, in float b, in float c, in float d, in float e, in float f); SVGRect createSVGRect(); SVGPoint createSVGPoint(); SVGPath createSVGPath(); SVGRGBColor createSVGRGBColor(in float red, in float green, in float blue) raises(SVGException); void moveFocus(in unsigned short motionType) raises(DOMException); void setFocus(in EventTarget theObject) raises(DOMException); EventTarget getCurrentFocusedObject(); };
nav-next
value.
nav-prev
value.
currentScale
is 1.currentRotate
is 0.currentTranslate
is SVGPoint(0,0)
.
The position and size of the viewport (implicit or explicit) that corresponds to this 'svg' element. When the user agent is actually rendering the content, then the position and size values represent the actual values when rendering.
If this SVG document is embedded as part of another document (e.g., via the HTML 'object' element), then the position and size are unitless values in the coordinate system of the parent document. (If the parent uses CSS or XSL layout, then unitless values represent pixel units for the current CSS or XSL viewport, as described in the CSS2 specification.) If the parent element does not have a coordinate system, then the user agent should provide reasonable default values for this attribute.
For stand-alone SVG documents, both 'x'
and 'y'
must be zero, the 'width'
must be the width of the viewport which the host environment provides to the SVG user agent into which it can render its content, and the 'height'
must be the height of the viewport, with all values expressed in the pixel coordinate system from the host environment, preferably such that this pixel coordinate system matches the same pixel coordinate system presented to HTML and matches the model for pixel coordinates described in the CSS2 specification.
Note that "pixel coordinate systems" are host-specific. Two possible
approaches that hosts might use for pixel coordinate systems are
actual device pixels or (particularly for high-resolution devices)
pseudo device pixels which exactly match SVG and CSS's "px"
coordinates.
The object itself and its contents are both readonly. A DOMException with error code NO_MODIFICATION_ALLOWED_ERR
is raised if attempt is made to modify it. The returned SVGRect object is "live", i.e. its x
, y
, width
, height
is
automatically updated if viewport size or position changes.
Returns the document time in seconds.
If getCurrentTime
is called before the document timeline has begun (for example, by script running
in a script
element before the rootmost svg element's
load
event is dispatched, when
'playbackOrder'
is set to 'onLoad'), then 0 is returned.
float | The current document time, in seconds, or 0 if the document timeline has not yet begun. |
Sets the document time (in seconds). This API is required to support seeking forwards and backwards in the timeline. After a seek, animation continues to play (forwards) from the new time. If seconds is negative, then the document will seek to time 0s.
If setCurrentTime
is called before the document timeline has begun (for example, by script running
in a script
element before the rootmost svg element's
load
event is dispatched, when
'playbackOrder'
is set to 'onLoad'), then the value of
seconds in the most recent invocation
of the method gives the time that the document time will be seeked to once
the document timeline has begun.
in float seconds | The document time to seek to, in seconds. |
setMatrixTrait
method. The internal representation of the matrix is as follows:
[ a c e ] [ b d f ] [ 0 0 1 ]
in float a | The 'a' component of the matrix to be set. |
in float b | The 'b' component of the matrix to be set. |
in float c | The 'c' component of the matrix to be set. |
in float d | The 'd' component of the matrix to be set. |
in float e | The 'e' component of the matrix to be set. |
in float f | The 'f' component of the matrix to be set. |
setRectTrait
method. The initial values for x
, y
, width
, height
of this new SVGRect are zero.
x
and y
of this new SVGPoint are zero.
setPathTrait
method.
setRGBColorTrait
method. The parameters are floats, one per color component. 0.0 represents zero intensity and 255.0 represents full intensity of a given color component. Colors originally in the rgb(%,%,%) syntax may have fractional components. Out of gamut colors may have component values less than 0.0 or greater than 255.0.
in float red | The red component of the SVGRGBColor. |
in float green | The green component of the SVGRGBColor. |
in float blue | The blue component of the SVGRGBColor. |
SVGRGBColor | The created SVGRGBColor. |
motionType
. The User Agent must take into account the
currently focused object in the document in order to find the new focused object.DOMFocusOut
event must be dispatched which has the previously focused object as the event target.DOMFocusIn
event must dispatched which has the the new focused object as the event target.DOMFocusIn
event.DOMFocusOut
/DOMFocusIn
event is dispatched.in short motionType | The type of motion. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested motion type is not supported (i.e. not one of the interface constants).
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the currently focused object doesn't have a
nav-* value corresponding to the requested motion type. For instance, if a moveFocus(NAV_UP) is called on an element which has no 'nav-up' attribute.
|
|
DOMException |
INVALID_STATE_ERR: Raised if the currently focused object has a
nav-* value corresponding to the requested motion type but the target indicated in this attribute can not be found or is not a focusable object. For instance, if a moveFocus(NAV_UP) is called on an object which has a 'nav-up' attribute but the value of this attribute references an element which is not focusable.
|
DOMFocusOut
event must be dispatched which has the previously focused object as the event target.DOMFocusIn
event must be dispatched which has the the new focused object as the event target.DOMFocusIn
event.DOMFocusOut
/DOMFocusIn
event is dispatched.
in EventTarget theObject | The object which should receive focus. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the in parameter is not a Node or SVGElementInstance, or if the requested element is not focusable (i.e. its ''focusable' attribute does not evaluate to
true ).
|
EventTarget | object | The currently focused object. |
getRGBColorTrait
)
such as 'fill', 'stroke', and 'color'.
interface SVGRGBColor { attribute unsigned long red; attribute unsigned long green; attribute unsigned long blue; };
This interface is identical to SVGRect interface defined in SVG 1.1.
interface SVGRect { attribute float x; attribute float y; attribute float width; attribute float height; };
This interface is identical to SVGPoint interface defined in SVG 1.1.
interface SVGPoint { attribute float x; attribute float y; SVGPoint matrixTransform(in SVGMatrix matrix); };
matrixTransform
Path data created or modified using this interface must be normalized as per the rules given in Path Normalization. However, path data that is just queried need not be normalized.
interface SVGPath { const unsigned short MOVE_TO = 77; const unsigned short LINE_TO = 76; const unsigned short CURVE_TO = 67; const unsigned short QUAD_TO = 81; const unsigned short CLOSE = 90; readonly attribute unsigned long numberOfSegments; unsigned short getSegment(in unsigned long cmdIndex) raises(DOMException); float getSegmentParam(in unsigned long cmdIndex, in unsigned long paramIndex) raises(DOMException); void moveTo(in float x, in float y); void lineTo(in float x, in float y); void quadTo(in float x1, in float y1, in float x2, in float y2); void curveTo(in float x1, in float y1, in float x2, in float y2, in float x3, in float y3); void close(); };
in unsigned long cmdIndex | The command index for the segment command to retrieve. |
unsigned short | The segment command. One of MOVE_TO , LINE_TO , CURVE_TO , QUAD_TO or CLOSE |
DOMException |
INDEX_SIZE_ERR: Raised if segment index is out of bounds or param index is out of bounds for this segment's type.
|
in unsigned long cmdIndex | The command index for the segment command. |
in unsigned long paramIndex | The parameter index to retrieve. |
float | The segment parameter. |
DOMException |
INDEX_SIZE_ERR: Raised if segment index out of bounds or param index out of bounds for this segment's type.
|
in float x | The x-axis coordinate for the specified point. |
in float y | The y-axis coordinate for the specified point. |
in float x | The x-axis coordinate for the specified point. |
in float y | The y-axis coordinate for the specified point. |
in float x1 | The x-axis coordinate of the first control point. |
in float y1 | The y-axis coordinate of the first control point. |
in float x2 | The x-axis coordinate of the final end point. |
in float y2 | The y-axis coordinate of the final end point. |
in float x1 | The x-axis coordinate of the first control point. |
in float y1 | The y-axis coordinate of the first control point. |
in float x2 | The x-axis coordinate of the second end point. |
in float y2 | The y-axis coordinate of the second end point. |
in float x3 | The x-axis coordinate of the final end point. |
in float y3 | The y-axis coordinate of the final end point. |
mTranslate
, inverse
, mMultiply
, mScale
and mRotate
methods in this interface
mutate the SVGMatrix object and return a reference to the SVGMatrix instance itself, after
performing the necessary matrix operation.
This matrix transforms source coordinates (x, y) into destination coordinates (x', y') by considering them to be a column vector and multiplying the coordinate vector by the matrix according to the following process:
[ x' ] [ a c e ] [ x ] [ a.x + c.y + e ] [ y' ] = [ b d f ] [ y ] = [ b.x + d.y + f ] [ 1 ] [ 0 0 1 ] [ 1 ] [ 1 ]
interface SVGMatrix { float getComponent(in unsigned long index) raises(DOMException); SVGMatrix mMultiply(in SVGMatrix secondMatrix); SVGMatrix inverse() raises(SVGException); SVGMatrix mTranslate(in float x, in float y); SVGMatrix mScale(in float scaleFactor); SVGMatrix mRotate(in float angle); };
getComponent(0)
is a, getComponent(1)
is b, etc.
in unsigned long index | The index of the matrix component to retrieve. |
float | The matrix component. |
DOMException |
INDEX_SIZE_ERR: Raised if the
index is invalid.
|
in SVGMatrix secondMatrix | The matrix to post-multiply with. |
SVGMatrix | The resulting current matrix. |
SVGMatrix | The inverse of the current matrix. |
SVGException |
SVG_MATRIX_NOT_INVERTABLE: Raised when determinant of this matrix is zero.
|
mMultiply(T)
, where T
is an
SVGMatrix object represented by the following
matrix:
[ 1 0 x ] [ 0 1 y ] [ 0 0 1 ]
in float x | The distance by which coordinates are translated in the X axis direction. |
in float y | The distance by which coordinates are translated in the Y axis direction. |
SVGMatrix | The resulting current matrix. |
mMultiply(S)
, where S
is an SVGMatrix
object represented by the following matrix:
[ scaleFactor 0 0 ] [ 0 scaleFactor 0 ] [ 0 0 1 ]
in float scaleFactor | The factor by which coordinates are scaled along the X and Y axis. |
SVGMatrix | The resulting current matrix. |
mMultiply(R)
, where R
is an
SVGMatrix object represented by the following matrix:
[ cos(angle) -sin(angle) 0 ] [ sin(angle) cos(angle) 0 ] [ 0 0 1 ]
in float angle | The angle of rotation in degrees. |
SVGMatrix | The resulting current matrix. |
interface SVGLocatable { SVGRect getBBox(); SVGMatrix getScreenCTM(); SVGRect getScreenBBox(); };
SVGRect | The bounding box. The returned object is a copy of the current bounding box value and will not change if the corresponding bounding box changes. |
getClientCTM
, but the name getScreenCTM
is kept for historical reasons. Also note that getScreenCTM reflects a snapshot of the current animated state, i.e. if one or several transforms that affect the element that getScreenCTM is called upon are animated then the returned transformation matrix reflects the current state of each such animated transform when calculating the returned matrix.
SVGMatrix | The transformation matrix. The returned object is a copy of the current screen CTM value and will not change if the corresponding screen CTM changes. |
SVGLocatable::getScreenCTM
method.SVGRect | The bounding box in screen coordinate space. The returned object is a copy of the current screen bounding box value and will not change if the corresponding screen bounding box changes. |
The following examples further clarify the behavior of the getBBox()
method. The examples have a short explanation, an SVG fragment and are
followed by a set of bounding box values which have the following
format:
[elementId] : {x, y, width, height} | {null}
where x, y, width and height define the values of the SVGRect object's
returned from a getBBox
call on the element with the specified id.
There are a few cases where the bounding box may be null
(see example
6).
getBBox
method for
various simple basic shapes and groups. In particular, it shows that
the transform, on an element, does not change the value of its user
space bounding box.
<g xml:id="group1" transform="translate(10, 20)" fill="red"> <rect xml:id="rect1" transform="scale(2)" x="10" y="10" width="50" height="50"/> <rect xml:id="rect2" x="10" y="10" width="100" height="100"/> <g xml:id="group2" transform="translate(10, 20)"> <rect xml:id="rect3" x="0" y="10" width="150" height="50"/> <circle xml:id="circle1" cx="20" cy="20" r="100" /> </g> </g>
Result:
[group1] : {-70.0, -60.0, 230.0, 200.0}
[rect1] : {10.0, 10.0, 50.0, 50.0}
[rect2] : {10.0, 10.0, 100.0, 100.0}
[group2] : {-80.0, -80.0, 230.0, 200.0}
[rect3] : {0.0, 10.0, 150.0, 50.0}
[circle1] : {-80.0, -80.0, 200.0, 200.0}
<g xml:id="group1" transform="translate(10, 20)" fill="red"> <rect xml:id="rect2" x="10" y="10" width="400" height="0"/> <g xml:id="group2" transform="translate(10, 20)"> <rect xml:id="rect3" x="0" y="10" width="150" height="50"/> </g> </g>
Result:
[group1] : {10.0, 10.0, 400.0, 70.0}
[rect2] : {10.0, 10.0, 400.0, 0.0}
[group2] : {0.0, 10.0, 150.0, 50.0}
[rect3] : {0.0, 10.0, 150.0, 50.0}
<svg xml:id="mySVG" version="1.2" baseProfile="tiny" width="10" height="20"> <g xml:id="group1" transform="translate(10, 20)" fill="red"> <rect xml:id="rect1" x="10" y="10" width="100" height="100"/> <ellipse xml:id="ellipse1" cx="20" cy="20" rx="0" ry="70" /> </g> </svg>
Result:
[mySVG] : {20.0, -30.0, 100.0, 160.0}
[group1] : {10.0, -50.0, 100.0, 160.0}
[rect1] : {10.0, 10.0, 100.0, 100.0}
[ellipse1] : {20.0, -50.0, 0.0, 140.0}
<svg xml:id="mySVG" version="1.2" baseProfile="tiny" width="0" height="50"> <g xml:id="group1" transform="translate(10, 20)" fill="red" > <rect xml:id="rect1" x="10" y="10" width="50" height="50"/> <g xml:id="group2" transform="translate(10, 20)"> <rect xml:id="rect2" x="0" y="10" width="150" height="0"/> <circle xml:id="circle1" cx="20" cy="20" r="500"/> </g> </g> </svg>
Result:
[mySVG] : {-460.0, -440.0, 1000.0, 1000.0}
[group1] : {-470.0, -460.0, 1000.0, 1000.0}
[rect1] : {10.0, 10.0, 50.0, 50.0}
[group2] : {-480.0, -480.0, 1000.0, 1000.0}
[rect2] : {0.0, 10.0, 150.0, 0.0}
[circle1] : {-480.0, -480.0, 1000.0, 1000.0}
<svg version="1.2" baseProfile="tiny"> <defs> <rect xml:id="myRect" x="0" y="0" width="60" height="40"/> </defs> <use xml:id="myUse" xlink:href="#myRect" x="-30" y="-20"/> </svg>
Result:
[myRect] : {0.0, 0.0, 60.0, 40.0}
[myUse] : {-30.0, -20.0, 60.0, 40.0}
createElementNS
call) is also null
.
<g xml:id="emptyG"/>
Result:
[emptyG] : {null}
display='none'
are not accounted for in the computation of their parent's bounding
box. This reflects the definition of the 'display' property and its
impact on rendering and bounding box computation. The example also
shows that elements with a 'hidden' 'visibility' still contribute to
their parent's bounding box computation.
<g xml:id="g1"> <g xml:id="g1.1.display.none" display="none"> <rect xml:id="rect1" x="10" y="10" width="40" height="40"/> </g> <rect xml:id="rect2.visibility.hidden" visibility="hidden" x="30" y="60" width="10" height="20"/> </g>
Result:
[g1] : {30.0, 60.0, 10.0, 20.0}
[g1.1.display.none] : {10.0, 10.0, 40.0, 40.0}
[rect1] : {10.0, 10.0, 40.0, 40.0}
[rect2.visibility.hidden] : {30.0, 60.0, 10.0, 20.0}
<g xml:id="g1"> <line xml:id="line1" x2="100" y2="100" transform="rotate(-45)"/> </g>
Result:
[g1] : {0.0, 0.0, 141.42136, 0}
[line1] : {0.0, 0.0, 100.0, 100.0}
<g> <line xml:id="thickLine" stroke-width="10" x2="100" y2="0"/> </g>
Result:
[thickLine] : {0.0, 0.0, 100.0, 0.0}
<svg xml:id="rootSvg" version="1.2" baseProfile="tiny" width="500" height="300" viewBox="0 0 200 100"> <rect x="-100" y="-200" width="500" height="100"/> </svg>
Result:
[rootSVG] : {-100, -200, 500, 100}
<g xml:id="g1"> <linearGradient xml:id="MyGradient"/> <stop offset="0.05" stop-color="#F60"/> <stop offset="0.95" stop-color="#FF6"/> </linearGradient> </g>
Result:
[g1] : {null}
This interface represents an element that has a physical location on the screen.
This interface is implemented by: 'rect', 'circle', 'ellipse', 'line', 'path', 'use', 'image', 'text', 'textArea', 'tspan', 'svg', 'a', 'video', 'animation', 'switch', 'foreignObject', 'polygon', 'polyline' and 'g'.
interface SVGLocatableElement : SVGElement, SVGLocatable { };
Trait manipulation interface. This interface is used to read and manipulate the value of "traits" associated with an SVGElement. Each trait corresponds to an attribute or property, which is parsed and understood by the element and in most cases animatable. Unlike attributes, each element has a well-defined set of traits and attempting to access an unsupported trait must throw an exception. Also unlike attributes traits are typed and their values are normalized; for instance SVG 'path' specification is parsed and all path commands are converted to their absolute variants, it is not possible to say through the value of the trait if a path command was absolute or relative. When getting and setting trait values, accessor of the correct type must be used or exception will be thrown.
For a trait corresponding to a property, the computed value is used: if the value of a given property is not specified on that element, then for inherited properties the value on the parent is used. For non-inherited values, or on the root element, the initial value of the property is used.
For a trait corresponding to a non-property attribute, if the attribute is inherited (eg xml:lang) the value of the parent is used. If the attribute is not inherited, or on the root element, the lacuna value for the attribute is used, if known. If not known (for example, for an unknown attribute, or a known attribute with no specified default), 'null' is returned.
Note that when using the TraitAccess interface for getting traits on elements outside of the tree, e.g. on elements just created or removed, what values are returned is User Agent dependent.
The different getTrait
methods (getTrait
, getTraitNS
, getFloatTrait
, ...) return base values (i.e. before animation is applied), and this is true for both static and animated content. Note however that if the attribute is inherited from an animated parent value, it will inherit the animated value.
The different getPresentationTrait
methods (getPresentationTrait
, getPresentationTraitNS
, getFloatPresentationTrait
, ...) return either the current animated value if the given trait is currently being animated (per the SMIL specification) or the base value if the given trait is not currently being animated.
Not all attributes are accessible by traits - see the table of supported attributes.
Setting a trait value has the same effect as changing a corresponding attribute, but trait setters can operate on typed values. The value which is modified is always a base value. For inheritable traits the trait value can always be set to 'inherit' (but querying the value will always return the actual inherited value as explained above).
Note about invalid/unsupported trait values:
There are two situations where the various trait setter methods (such as setTrait
, setFloatTrait
or setPathTrait
methods) consider a value invalid and throw a DOMException with the INVALID_ACCESS_ERR code.
The first situation is when the trait value is invalid with regards to its definition (for example, trying to set the 'stroke-linejoin'
trait to 'foo'
would cause this exception). The trait methods will consider the value to be invalid if it is in error.
The second situation is when the trait value is invalid with regards to animations currently applied to the trait. The value is considered invalid because it would put the animation, and therefore the document, in an error state. For example, if a 'path' element has animations on its 'd' attribute, trying to change the 'd' attribute to a value incompatible with the animations will cause the exception to happen.
interface TraitAccess { DOMString getTrait(in DOMString name) raises(DOMException); DOMString getTraitNS(in DOMString namespaceURI, in DOMString name) raises(DOMException); float getFloatTrait(in DOMString name) raises(DOMException); sequence<float> getFloatListTrait(in DOMString name) raises(DOMException); SVGMatrix getMatrixTrait(in DOMString name) raises(DOMException); SVGRect getRectTrait(in DOMString name) raises(DOMException); SVGPath getPathTrait(in DOMString name) raises(DOMException); SVGRGBColor getRGBColorTrait(in DOMString name) raises(DOMException); DOMString getPresentationTrait(in DOMString name) raises(DOMException); DOMString getPresentationTraitNS(in DOMString namespaceURI, in DOMString name) raises(DOMException); float getFloatPresentationTrait(in DOMString name) raises(DOMException); sequence<float> getFloatListPresentationTrait(in DOMString name) raises(DOMException); SVGMatrix getMatrixPresentationTrait(in DOMString name) raises(DOMException); SVGRect getRectPresentationTrait(in DOMString name) raises(DOMException); SVGPath getPathPresentationTrait(in DOMString name) raises(DOMException); SVGRGBColor getRGBColorPresentationTrait(in DOMString name) raises(DOMException); void setTrait(in DOMString name, in DOMString value) raises(DOMException); void setTraitNS(in DOMString namespaceURI, in DOMString name, in DOMString value) raises(DOMException); void setFloatTrait(in DOMString name, in float value) raises(DOMException); void setFloatListTrait(in DOMString name, in sequence<float> value) raises(DOMException); void setMatrixTrait(in DOMString name, in SVGMatrix matrix) raises(DOMException); void setRectTrait(in DOMString name, in SVGRect rect) raises(DOMException); void setPathTrait(in DOMString name, in SVGPath path) raises(DOMException); void setRGBColorTrait(in DOMString name, in SVGRGBColor color) raises(DOMException); };
getTraitNS
with namespaceURI
set to null
.
in DOMString name | The name of the trait to retrieve. |
DOMString | The trait value. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a DOMString (SVG Tiny only).
|
getTrait
, but for namespaced traits. Parameter name must be a non-qualified trait name, i.e. without prefix.
in DOMString namespaceURI | The namespace of the trait to retrieve. |
in DOMString name | The name of the trait to retrieve. |
DOMString | The trait value. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a DOMString (SVG Tiny only).
|
float
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
float |
The trait value as a float . |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value is a non-numeric
float (e.g. NaN ).
|
sequence<float>
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
sequence<float> |
The trait value as a sequence<float> . |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a
sequence<float> .
|
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGMatrix.
|
null
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGRect.
|
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGPath.
|
null
.
Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
SVGRGBColor | The trait value as an SVGRGBColor. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGRGBColor.
|
getPresentationTraitNS
with namespaceURI
set to null
.
in DOMString name | The name of the trait to retrieve. |
DOMString | The trait presentation value. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a DOMString (SVG Tiny only).
|
getPresentationTrait
, but for namespaced traits. The parameter name must be a non-qualified trait name, i.e. without prefix.
in DOMString namespaceURI | The namespace of the trait to retrieve. |
in DOMString name | The name of the trait to retrieve. |
DOMString | The trait presentation value. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a DOMString (SVG Tiny only).
|
float
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
float |
The trait presentation value as a float . |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value is a non-numeric
float (e.g. NaN ).
|
sequence<float>
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
sequence<float> |
The trait presentation value as a sequence<float> . |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to a
sequence<float> .
|
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGMatrix.
|
null
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGRect.
|
in DOMString name | The name of the trait to retrieve. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGPath.
|
null
.
Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to retrieve. |
SVGRGBColor | The trait presentation value as an SVGRGBColor. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element or
null .
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if requested trait's computed value cannot be converted to an SVGRGBColor.
|
setTraitNS
with the namespaceURI
attribute set to null
.
in DOMString name | The name of the trait to be set. |
in DOMString value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as a DOMString.
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is an invalid value for the given trait or
null is specified.
|
|
DOMException |
NO_MODIFICATION_ALLOWED_ERR: Raised if attempt is made to change a readonly trait.
|
setTrait
, but for namespaced traits. The parameter name must be a non-qualified trait name, i.e. without prefix.
in DOMString namespaceURI | The namespace of the trait to be set. |
in DOMString name | The name of the trait to be set. |
in DOMString value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as a DOMString.
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is an invalid value for the given trait or
null is specified. This error is also thrown when the 'use' element is hooked into the document tree and the the value of 'xlink:href' is set invalid.
|
|
DOMException |
NO_MODIFICATION_ALLOWED_ERR: Raised if attempt is made to change a readonly trait.
|
float
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to be set. |
in float
value |
The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as a numeric
float (e.g. NaN ).
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is an invalid value for the given trait or
null is specified.
|
sequence<float>
. Parameter name must be a
non-qualified trait name, i.e. without prefix.
in DOMString name | The name of the trait to be set. |
in sequence<float>
value |
The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as a sequence<float>).
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is an invalid value for the given trait or
null is specified.
|
in DOMString name | The name of the trait to be set. |
in SVGMatrix value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as an SVGMatrix.
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is
null .
|
in DOMString name | The name of the trait to be set. |
in SVGRect value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as an SVGRect.
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is an invalid value for the given trait or
null is specified. An SVGRect is invalid if the width or height values are set to negative..
|
in DOMString name | The name of the trait to be set. |
in SVGPath value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as an SVGPath.
|
|
DOMException |
in DOMString name | The name of the trait to be set. |
in SVGRGBColor value | The value of the trait. |
DOMException |
NOT_SUPPORTED_ERR: Raised if the requested trait is not supported on this element.
|
|
DOMException |
TYPE_MISMATCH_ERR: Raised if the requested trait's value cannot be specified as an SVGRGBColor.
|
|
DOMException |
INVALID_ACCESS_ERR: Raised if the input value is
null .
|
Trait access is not required on all of the SVG Tiny attributes and properties. The table below shows the attributes and properties that SVG Tiny DOM 1.2 implementations must support trait access to. Each attribute row lists the allowed getter and setter(s). The 'Lacuna Values' column specifies the lacuna values that must be used for each attribute or property. If a 'Lacuna Values' column entry is empty, there is no lacuna value. Unless explicitly stated in the 'Comments' column, a supported attribute is accessible on all elements it can belong to. See the attribute section for a list of attributes and which elements they belong to.
Implementations that support multiple versions of svg must allow trait access to the most extensive set and support the types supported by each trait in the most extensive set. However, content relying on traits or trait types available in future versions may not work in all conformant SVG Tiny 1.2 uDOM implementations.
For 'required' attributes, there are two cases:
The User Agent must raise a NOT_SUPPORTED_ERR whenever there is an attempt to use trait methods for traits which are not supported by the UA.
Note: For some of the attributes and data types additional rules apply. These rules are defined below the table.
Note: In the table below:
getTrait
method, it must also support the getTraitNS
, getPresentationTrait
, and getPresentationTraitNS
methods.getFloatTrait
), it must also support the corresponding get***PresentationTrait
method (e.g.,
getFloatPresentationTrait
).setTrait
method, it must also support the setTraitNS
method.Trait Target | Trait Getter [Return Value] |
Trait Setter [Argument Value] |
Lacuna Values | Comments |
---|---|---|---|---|
Element text content | getTrait("#text") [The element text content] |
setTrait("#text", ...) [New element text content] |
See Text Content Access. | |
accumulate, attribute | getTrait("accumulate") [none | sum] |
setTrait("accumulate", ...) [none | sum] |
"none" | |
additive, attribute | getTrait("additive") [replace | sum] |
setTrait("additive", ...) [replace | sum] |
"replace" | |
attributeName, attribute | getTrait("attributeName") |
setTrait("attributeName", ...) |
||
audio-level, property | getFloatTrait("audio-level") [0 ≤ value ≤ 1] |
setFloatTrait("audio-level", ...) [0 ≤ value ≤ 1] setTrait("audio-level", ...) [inherit] |
1.0 | |
baseProfile, attribute | getTrait("baseProfile") |
setTrait("baseProfile", ...) |
"none" | |
begin, attribute | N/A | setTrait("begin", ...) |
||
calcMode, attribute | getTrait("calcMode") [discrete | linear | paced | spline] |
setTrait("calcMode", ...) [discrete | linear | paced | spline] |
"paced" when accessed on an 'animateMotion' element, "linear" otherwise | |
color, property | getRGBColorTrait("color") [null, SVGRGBColor] |
setRGBColorTrait("color, ...") setTrait("color", ...) [inherit | <color>] |
rgb(0,0,0) | |
cx, attribute | getFloatTrait("cx") |
setFloatTrait("cx", ...) |
0.5 when accessed on a 'radialGradient' element, 0.0 otherwise | |
cy, attribute | getFloatTrait("cy") |
setFloatTrait("cy", ...) |
0.5 when accessed on a 'radialGradient' element, 0.0 otherwise | |
d, attribute | getPathTrait("d") [SVGPath] |
setPathTrait("d", ...) [SVGPath] |
An SVGPath object with no path segments | See Accessing rules for path attributes. |
display, property | getTrait("display") [inline | none] |
setTrait("display", ...) [inline | none | inherit] |
"inline" | See Accessing rules for 'display' property. |
dur, attribute | N/A | setTrait("dur", ...) |
||
editable, attribute | getTrait("editable") [simple | none] |
setTrait("editable, ...) [simple | none] |
"none" | |
end, attribute | N/A | setTrait("end", ...) |
||
fill, property | getRGBColorTrait("fill") [null, SVGRGBColor] getTrait("fill") [none | <color> | <system paint> | IRI] |
setRGBColorTrait("fill", ...) setTrait("fill", ...) [none | currentColor | IRI | <color> | <system paint> | inherit] |
rgb(0,0,0) | There are no trait accessors for the animation element 'fill' attribute. |
fill-opacity, property | getFloatTrait("fill-opacity") [0 ≤ value ≤ 1] |
setFloatTrait("fill-opacity", ...) [0 ≤ value ≤ 1] setTrait("fill-opacity", ...) [inherit] |
1.0 | |
fill-rule, property | getTrait("fill-rule") [nonzero | evenodd] |
setTrait("fill-rule", ...) [nonzero | evenodd | inherit] |
"nonzero" | |
focusable, attribute | getTrait("focusable") [true | false] |
setTrait("focusable", ...) [true | false | auto] |
"auto" | |
focusHighlight, attribute | getTrait("focusHighlight") [auto | none] |
setTrait("focusHighlight", ...) [auto | none] |
"auto" | |
font-family, property | getTrait("font-family") |
setTrait("font-family", ...) [<FontFamilyValue> | inherit] |
User agent specific | See Accessing rules for font properties. |
font-size, property | getFloatTrait("font-size") [value ≥ 0] |
setFloatTrait("font-size", ...) [value ≥ 0] setTrait("font-size", ...) [xx-small | x-small | small | medium | large | x-large | xx-large | larger | smaller | inherit] |
User agent specific | |
font-style, property | getTrait("font-style") [normal | italic | oblique] |
setTrait("font-style", ...) [normal | italic | oblique | inherit] |
"normal" | See Accessing rules for font properties. |
font-weight, property | getTrait("font-weight") [100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900] |
setTrait("font-weight", ...) [normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | inherit] |
"normal" | See Accessing rules for font properties. |
from, attribute | N/A | setTrait("from", ...) |
||
gradientUnits, attribute | getTrait("gradientUnits") [userSpaceOnUse | objectBoundingBox] |
setTrait("gradientUnits", ...) [userSpaceOnUse | objectBoundingBox] |
"objectBoundingBox" | |
height, attribute | getFloatTrait("height") [value ≥ 0] getTrait("height") ["auto"] |
setFloatTrait("height", ...) [value ≥ 0] setTrait("height", ...) ["auto"] |
"auto" when accessed on a 'textArea' element, 0.0 otherwise | See Accessing rules for 'width' and 'height' attributes. |
id, attribute | getTrait("id") |
setTrait("id", ...) |
||
keyPoints, attribute | N/A | setTrait("keyPoints", ...) |
||
keySplines, attribute | N/A | setTrait("keySplines", ...) |
||
keyTimes, attribute | N/A | setTrait("keyTimes", ...) |
||
max, attribute | N/A | setTrait("max", ...) |
||
min, attribute | N/A | setTrait("min", ...) |
||
nav-right, attribute | getTrait("nav-right") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-right", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-next, attribute | getTrait("nav-next") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-next", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-up, attribute | getTrait("nav-up") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-up", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-up-right, attribute | getTrait("nav-up-right") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-up-right", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-up-left, attribute | getTrait("nav-up-left") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-up-left", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-prev, attribute | getTrait("nav-prev") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-prev", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-down, attribute | getTrait("nav-down") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-down", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-down-right, attribute | getTrait("nav-down-right") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-down-right", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-down-left, attribute | getTrait("nav-down-left") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-down-left", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
nav-left, attribute | getTrait("nav-left") [auto | self | url(<Local IRI Reference>)] |
setTrait("nav-left", ...) [auto | self | url(<Local IRI Reference>)] |
"auto" | |
offset, attribute | getFloatTrait("offset") [0 ≤ value ≤ 1] |
setFloatTrait("offset", ...) [0 ≤ value ≤ 1] |
||
opacity, property | getFloatTrait("opacity") [0 ≤ value ≤ 1] |
setFloatTrait("opacity", ...) [0 ≤ value ≤ 1] setTrait("opacity", ...) [inherit] |
||
path, attribute | getPathTrait("path") [SVGPath] |
setPathTrait("path", ...) [SVGPath] |
An SVGPathobject with no path segments | See Accessing rules for path attributes. |
points, attribute | getFloatListTrait("points") |
setFloatListTrait("points", ...) |
||
r, attribute | getFloatTrait("r") [value ≥ 0] |
setFloatTrait("r", ...) [value ≥ 0] |
0.5 when accessed on a 'radialGradient' element, 0.0 otherwise | |
repeatCount, attribute | N/A | setTrait("repeatCount", ...) |
||
repeatDur, attribute | N/A | setTrait("repeatDur", ...) |
||
restart, attribute | getTrait("restart") [always | whenNotActive | never] |
setTrait("restart", ...) [always | whenNotActive | never] |
"always" | |
rx, attribute | getFloatTrait("rx") [value ≥ 0] |
setFloatTrait("rx", ...) [value ≥ 0] |
0.0 | |
ry, attribute | getFloatTrait("ry") [value ≥ 0] |
setFloatTrait("ry", ...) [value ≥ 0] |
0.0 | |
snapshotTime, attribute | getFloatTrait("snapshotTime") [value ≥ 0] |
setFloatTrait("snapshotTime", ...) [value ≥ 0] |
0.0 | |
solid-color, property | getRGBColorTrait("solid-color") [null, SVGRGBColor] |
setRGBColorTrait("solid-color", ...) setTrait("solid-color", ...) [<color> | inherit] |
rgb(0,0,0) | |
solid-opacity, property | getFloatTrait("solid-opacity") [0 ≤ value ≤ 1] |
setFloatTrait("solid-opacity", ...) [0 ≤ value ≤ 1] setTrait("solid-opacity") [inherit] |
1.0f | |
stop-color, property | getRGBColorTrait("stop-color") [null, SVGRGBColor] getTrait("stop-color") [none | <color>] |
setRGBColorTrait("stop-color", ...) setTrait("stop-color") [none | currentColor | <color> | inherit] |
rgb(0,0,0) | |
stop-opacity, property | getFloatTrait("stop-opacity") [0 ≤ value ≤ 1] |
setFloatTrait("stop-opacity", ...) [0 ≤ value ≤ 1] setTrait("stop-opacity", ...) [inherit] |
1.0f | |
stroke, property | getRGBColorTrait("stroke") [null, SVGRGBColor] getTrait("stroke") [none | <color> | <system paint> | IRI] |
setRGBColorTrait("stroke", ...) setTrait("stroke", ...) [none | currentColor | IRI | <color> | <system paint> | inherit] |
"none" | |
stroke-dasharray, property | getFloatListTrait("stroke-dasharray") getTrait("stroke-dasharray") [none, inherit] |
setFloatListTrait("stroke-dasharray", ...) setTrait("stroke-dasharray", ...) [none, inherit] |
"none" | |
stroke-dashoffset, property | getFloatTrait("stroke-dashoffset") |
setFloatTrait("stroke-dashoffset", ...) setTrait("stroke-dashoffset", ...) [inherit] |
0.0 | |
stroke-linecap, property | getTrait("stroke-linecap") [butt | round | square] |
setTrait("stroke-linecap", ...) [butt | round | square | inherit] |
"butt" | |
stroke-linejoin, property | getTrait("stroke-linejoin") [miter | round | bevel] |
setTrait("stroke-linejoin", ...) [miter | round | bevel | inherit] |
"miter" | |
stroke-miterlimit, property | getFloatTrait("stroke-miterlimit") [value ≥ 1] |
setFloatTrait("stroke-miterlimit") [value ≥ 1] setTrait("stroke-miterlimit", ...) [inherit]
|
4.0 | |
stroke-opacity, property | getFloatTrait("stroke-opacity") [0 ≤ value ≤ 1] |
setFloatTrait("stroke-opacity", ...) [0 ≤ value ≤ 1] setTrait("stroke-opacity", ...) [inherit] |
1.0 | |
stroke-width, property | getFloatTrait("stroke-width") [value ≥ 0] |
setFloatTrait("stroke-width", ...) [value ≥ 0] setTrait("stroke-width", ...) [inherit] |
1.0 | |
target, attribute | getTrait("target") |
setTrait("target", ...) |
"_self" | |
text-anchor, property | getTrait("text-anchor") [start | middle | end] |
setTrait("text-anchor", ...) [start | middle | end | inherit] |
"start" | |
to, attribute | N/A | setTrait("to", ...) |
||
transform, attribute | getMatrixTrait("transform") getTrait("transform") |
setMatrixTrait("transform", ...) setTrait("transform", ...) [<transform-list> | <transform-ref> | none] |
Identity matrix (1,0,0,1,0,0) | See Accessing rules for 'transform' attribute. |
type, attribute | getTrait("type") [translate | scale | rotate | skewX | skewY] |
setTrait("type", ...) [translate | scale | rotate | skewX | skewY] |
These are the trait accessors for the 'type' attribute on the 'animateTransform' element. There are no trait accessors for the 'type' attribute on the 'audio', 'handler', 'image', 'script' and 'video' elements. | |
values, attribute | N/A | setTrait("values", ...) |
||
vector-effect, property | getTrait("vector-effect") [none | non-scaling-stroke] |
setTrait("vector-effect", ...) [none | non-scaling-stroke | inherit] |
"none" | |
version, attribute | getTrait("version") |
setTrait("version", ...) |
User-Agent | |
viewBox, attribute | getRectTrait("viewBox") [ null | SVGRect] |
setRectTrait("viewBox", ...) [SVGRect] setTrait("viewBox", ...) [none] |
null |
If the 'viewBox' attribute has the value 'none',
the getRectTrait method will return null . |
viewport-fill, property | getRGBColorTrait("viewport-fill") [null, SVGRGBColor] getTrait("viewport-fill") [none | <color>] |
setRGBColorTrait("viewport-fill", ...) setTrait("viewport-fill", ...) [none | currentColor | <color> | inherit] |
"none" | |
viewport-fill-opacity, property | getFloatTrait("viewport-fill-opacity") [0 ≤ value ≤ 1] |
setFloatTrait("viewport-fill-opacity", ...) [0 ≤ value ≤ 1] setTrait("viewport-fill-opacity", ...) [inherit] |
1.0 | |
visibility, property | getTrait("visibility") [visible | hidden] |
setTrait("visibility", ...) [visible | hidden | inherit] |
"visible" | |
width, attribute | getFloatTrait("width") [value ≥ 0] getTrait("width") ["auto"]
|
setFloatTrait("width", ...) [value ≥ 0] setTrait("width", ...) ["auto" ] |
"auto" when accessed on a 'textArea' element, 0.0 otherwise | See Accessing rules for 'width' and 'height' attributes. |
x, attribute | getFloatTrait("x") getFloatListTrait("x") |
setFloatTrait("x", ...) setFloatListTrait("x", ...) |
0.0 | See Accessing rules for 'x' and 'y' attributes. |
x1, attribute | getFloatTrait("x1") |
setFloatTrait("x1", ...) |
0.0 | |
x2, attribute | getFloatTrait("x2") |
setFloatTrait("x2", ...) |
1.0 when accessed on a 'linearGradient' element, 0.0 otherwise | |
xlink:href, attribute | getTraitNS("http://www.w3.org/1999/xlink", "href") [absolute IRI] |
setTraitNS("http://www.w3.org/1999/xlink", "href", ...) |
"" | |
y, attribute | getFloatTrait("y") getFloatListTrait("y") |
setFloatTrait("y", ...) setFloatListTrait("y", ...) |
0.0 | See Accessing rules for 'x' and 'y' attributes. |
y1, attribute | getFloatTrait("y1") |
setFloatTrait("y1", ...) |
0.0 | |
y2, attribute | getFloatTrait("y2") |
setFloatTrait("y2", ...) |
0.0 | |
zoomAndPan, attribute | getTrait("zoomAndPan") [disable | magnify] |
setTrait("zoomAndPan", ...) [disable | magnify] |
"magnify" |
The 'transform' attribute in SVGT1.2 can have three types of values.
The "normal" transformation list (e.g. scale, translate, rotate, matrix etc),
the newly introduced 'ref(svg)' type or 'none'. getMatrixTrait
returns the current evaluated matrix in
all cases. If the user needs to know that the 'transform' attribute value was a 'ref' or a 'none' getTrait
must be used. By using setTrait
the user can set the 'transform' attribute to 'ref(svg)' or 'none'.
Due to backward compatibility reasons the 'display' values accessible via the trait mechanism are limited to 'none' and 'inline', all other values are translated into 'none' or 'inline'. (For a list of all possible 'display' values, see Controlling visibility.) If other 'display' values are of interest, e.g. the user want to set display to 'block', the more generic getAttributeNS
/setAttributeNS
must be used. Note however that an SVGT1.2 user agent is allowed to normalize its attribute data as described in Display Normalization.
The following rule applies to SMIL animation elements ('animate', 'animateTransform', 'animateColor', 'animateMotion', 'set' , 'discard').
These elements can be inserted and removed from the tree but
they cannot be modified using the TraitAccess methods
once inserted into the tree. If an attempt is made to do so,
the TraitAccess
method will throw a DOMException
with code NOT_SUPPORTED_ERR. Modifying the element
using the setAttribute
and
setAttributeNS
methods of the Element
interface will change the document, but will have no effect on
the animation.
This restriction means that if the author wishes to add animations via script, the attributes of the animation elements must be modified before being inserted into the tree. The following is an example of adding an animation to the document, setting the relevant attributes prior to insertion.
<svg version="1.2" baseProfile="tiny" xmlns="http://www.w3.org/2000/svg" xml:id="svg-root" width="100%" height="100%" viewBox="0 0 480 360"> <rect xml:id="myRect" fill="green" x="10" y="10" width="200" height="100" stroke="black" stroke-width="2"/> </svg>
SVGElement newAnimate = (SVGElement)document.createElementNS(svgNS, "animate"); newAnimate.setTrait("attributeName", "fill"); newAnimate.setTrait("from", "red"); newAnimate.setTrait("to", "blue"); newAnimate.setTrait("dur", "5"); newAnimate.setTrait("repeatCount", "10"); Element myRect = document.getElementById("myRect"); myRect.appendChild(newAnimate);
If getFloatTrait
is used to retrieve the value of the
'x' or
'y'
attribute on a 'text'
element, where the attribute value has more than one
<coordinate>, a
DOMException with
error code TYPE_MISMATCH_ERR must be raised.
If getFloatListTrait
or
setFloatListTrait
are used on elements other than a 'text'
element, a DOMException with
error code TYPE_MISMATCH_ERR must be raised.
If getFloatTrait
is used to retrieve the value of the
'width' or
'height'
attribute on an 'svg'
element, where the value is specified as a percentage or unit value,
a DOMException with
error code TYPE_MISMATCH_ERR must be raised.
If trait accessors are used to get or set the 'font-family', 'font-style' or 'font-weight' properties on a 'font-face' element, a DOMException with error code NOT_SUPPORTED_ERR must be raised.
If the getPathTrait method is used to get an SVGPath and the path attribute had an error at some point the returned SVGPath must contain a valid SVGPath containing all valid path segments up till the point of the error.
The following rule applies to multimedia elements ('audio', 'video', 'animation').
SVG Timing attributes cannot be modified using the TraitAccess methods
once inserted into the tree. If an attempt is made to do so,
the TraitAccess
method will throw a DOMException
with code NOT_SUPPORTED_ERR. Modifying these attributes
using the setAttribute
and
setAttributeNS
methods of the Element
interface will change the document, but will have no effect on
the element.
This interface represents an SVG element in the document tree.
It provides methods to traverse elements in the uDOM tree and allows setting and getting the id of an element.
Note: See the definition of id and xml:id for the rules of how to treat id and xml:id.
interface SVGElement : Element, EventTarget, TraitAccess { attribute DOMString id; };
null
if no id specified.interface SVGTimedElement : SVGElement, smil::ElementTimeControl { void pauseElement(); void resumeElement(); readonly attribute boolean isPaused; };
true
if the Timed Element is paused. false
otherwise. See Paused element and the active duration.This interface is implemented by the following SMIL animation elements: 'animate', 'animateTransform', 'animateColor', 'animateMotion', 'set'. It is included for historical reasons and has been deprecated. Note that this interface is unrelated to the new 'animation' element.
interface SVGAnimationElement : SVGTimedElement { };
interface SVGVisualMediaElement : SVGLocatableElement, SVGTimedElement { };
The majority of scripted SVG documents in existence make use of the browser specific Window interface. SVGT 1.2 specifies an SVGGlobal interface, taking into account the de-facto standard that already exists, as well as adding the new features present in SVGT 1.2. SVGGlobal inherits from the Global interface, which is currently defined to be empty. The Global interface is designed to be the parent interface for language specific window objects. In scripting implementations, the methods and attributes defined by the Global object are normally part of the global execution context.
Interface SVGGlobal provides a global object for scripts embedded in an SVG document.
interface SVGGlobal : Global { Connection createConnection(); Timer createTimer(in long initialInterval, in long repeatInterval) raises(GlobalException); void gotoLocation(in DOMString newIRI); readonly attribute Document document; readonly attribute Global parent; DOMString binaryToString(in sequence<octet> octets, in DOMString encoding) raises(GlobalException); sequence<octet> stringToBinary(in DOMString data, in DOMString encoding) raises(GlobalException); void getURL(in DOMString iri, in AsyncStatusCallback callback); void postURL(in DOMString iri, in DOMString data, in AsyncStatusCallback callback, in DOMString type, in DOMString encoding); Node parseXML(in DOMString data, in Document contextDoc); };
null
.
Connection | The created Connection. |
waiting
state.
in long initialInterval | Specifies the first interval in milliseconds for a repetitive Timer, i.e. sets the initial value of the delay attribute on Timer. Or in the case the Timer is not repetitive it specifies the interval for the one time timer. This parameter corresponds to the delay attribute on the Timer. Setting this parameter with a negative value will create a Timer which is in the waiting state. |
in long repeatInterval | Specifies the time interval on which the Timer repeats subsequent to the initial interval. A negative value will make the Timer a one time timer. |
GlobalException |
DENIED_ERR: Raised if the values for the parameters initialInterval and repeatInterval are not given.
|
gotoLocation
is activated from script. If the IRI is invalid or unresolvable, the current document remains loaded.
"" means that the current document is reloaded. The current document location is the IRI of the Document
object pointed to by the SVGGlobal.document
field.
Relative IRI references are resolved based on the current base IRI of the current document. The current document is discarded, reloaded, and reparsed. The timeline is restarted and a new load event is fired.
Note: For HTTP, a pragma:no-cache is not issued and thus a fresh copy from the server is not forced if there is a cache.
Given a sequence of octets such as can be obtained through a Connection object and a character encoding identifier, this method returns the string produced by interpreting the sequence of octets using that character encoding. The only two encodings that must be supported are UTF-8 and UTF-16 (given by the character encoding identifiers "UTF-8" and "UTF-16", respectively). Implementations may support other encodings as well, and if they do so, must use the name (and may also use any aliases) as registered in the IANA character set registry as the character encoding identifier. [BCP 19] Unregistered character encodings must use a character encoding identifier that begins with the string "x-".
in sequence<octet> data | A sequence of octets to be decoded using the specified encoding. |
in DOMString encoding | A character encoding identifier. |
DOMString | The string resulting from decoding the sequence of octets. |
GlobalException |
ENCODING_ERR: Raised if it is impossible to decode the given sequence of octets
with the provided encoding (e.g. because of poorly formed data).
|
Given a string and a character encoding identifier, this method returns a sequence of octets representing the string encoded using the specified encoding as can be used to transmit data using the Connection interface. The only two encodings that must be supported are UTF-8 and UTF-16 (given by the character encoding identifiers "UTF-8" and "UTF-16", respectively). Implementations may support other encodings as well, and if they do so, must use the name (and may also use any aliases) as registered in the IANA character set registry as the character encoding identifier. [BCP 19] Unregistered character encodings must use a character encoding identifier that begins with the string "x-".
in DOMString data | A string to be encoded using the specified encoding. |
in DOMString encoding | A character encoding identifier. |
sequence<octet> | The sequence of octets resulting from encoding the string. |
GlobalException |
ENCODING_ERR: Raised if it is impossible to encode the given string
with the provided encoding (e.g. because the target encoding
cannot capture all characters in the string).
|
Given an IRI and an AsyncStatusCallback object on which to call a callback function, this method will attempt to fetch the resource at that IRI. If the IRI uses the HTTP or HTTPS scheme, the HTTP GET method will be used. Implementations may support other schemes, but are not required to.
This method call must take place asynchronously. When called, control returns immediately to the calling context, and once the request is completed the callback is called. Multiple calls to this method must be executed in FIFO order.
User agents are required to support the gzip content coding for HTTP requests and must decode such content before passing it on to the callback. User agents are not required to support gzip encoding content that they send, though they are encouraged to. Cookies should be supported so that state can be maintained across requests. User agents may provide the user with means to interact with the request (e.g. to enter authentication information) but are not required to.
It is important to note that for security reasons, user agents are strongly
encouraged to restrict these requests by origin. When enforcing such
restrictions, the callback is called immediately with its
AsyncURLStatus
object's success field set to false
and other fields set to null
. Redirection responses (3xx HTTP
status codes) must not be exposed through the API but rather they must be
processed internally according to the HTTP specification.
in DOMString iri | The IRI of the resource that is being requested. |
in AsyncStatusCallback callback | The object on which the callback will be called upon completion of the request. |
Given an IRI, data to be transmitted, an AsyncStatusCallback object on which to call a callback function, a media type, and a content coding, this method will post the data to the specified IRI using the requested media type and content coding. User agents must support postURL being invoked with an HTTP or HTTPS IRI, but may support other IRI schemes if they indicate protocols that are functionally compatible with HTTP. Once the request has been completed the callback is invoked as described in the AsyncStatusCallback interface. If postURL is invoked with an IRI that does not support posting content, or which does not post content in a manner compatible with HTTP, a DOMException with code NOT_SUPPORTED_ERR must be thrown.
Processing requirements are the same as for
getURL
, with the following
notes and additions.
text/plain
.
identity
.
in DOMString iri | The IRI of the resource that is being requested. |
in DOMString data | The data that will be the body of the POST request. |
in AsyncStatusCallback callback | The object on which the callback will be called upon completion of the request. |
in DOMString type | The content type of the POST request. |
in DOMString encoding | The encoding of the POST request. |
Given a string and a Document object, parse the string as an XML document and return
a Node representing it. If the XML in the string is not well-formed according to
either XML 1.0 or XML 1.1 or not namespace-well-formed according to Namespaces in
XML 1.0 or Namespaces in
XML 1.1 respectively, this method must return a null
value.
When parsing the input string, the contextDoc
parameter is used only for setting
the ownerDocument
field in the parsed nodes.
If during parsing a 'script' element is encountered, it must not be executed at that time.
Script execution is deferred until the returned Document
(or applicable parts thereof) is inserted into the contextDoc
document.
There is no requirement to load any external resources, e.g. external entities, stylesheets, scripts, raster images, video, audio etc, for the parsing to complete. XSL stylesheets must not be applied.
If the contextDoc
parameter is
defined, this method returns an Element object the ownerDocument
field of which must be set to be the provided Document object. In effect when
the contextDoc
parameter is specified the processing must be equivalent to applying the following steps:
documentElement
elementimportNode
on the Document object passed to parseXML
with the Element from the previous step as its first parameter and the
deep
parameter set to true
. (Please note that importNode
is part of DOM 3 Core but not of the uDOM. It is mentioned here to indicate that the effect must be as if importNode
had been used, but not to require that it be supported in implementations)
in DOMString data | The data that is to be parsed as XML. |
in Document contextDoc | The Document object in the context of which to perform the parsing. |
Node | A Node (either a Document or an Element) representing the content that was parsed. |
DOMException |
INVALID_CHARACTER_ERR: Raised if one of the parsed XML names is not an XML name according to the XML version in use specified in the Document.xmlVersion attribute of the
contextDoc .
|
primary.svg
<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" xmlns:xlink="http://www.w3.org/1999/xlink"> <use xlink:href="resource.svg#g"/> </svg>
resource.svg
<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" xmlns:xlink="http://www.w3.org/1999/xlink"> <g id="g"> <script type="application/ecmascript"> gotoLocation("somewhere.svg"); </script> </g> </svg>
anchor.svg
<svg xmlns="http://www.w3.org/2000/svg" version="1.2" baseProfile="tiny" xmlns:xlink="http://www.w3.org/1999/xlink"> <a xlink:href="somewhere.svg" target="_replace"><text>Click me!</text></a> </svg>
This interface is implemented by code that intends to process content
retrieved through
getURL
or
postURL
, both of which take
an instance of this interface as a parameter. The
operationComplete
method of the object implementing this interface is called upon completion of
the request.
interface AsyncStatusCallback { void operationComplete(in AsyncURLStatus status); };
This method is implemented by code in order to be notified of the
result of fetching a resource using
getURL
or
postURL
. Upon completion
of the request, the method is called with an
AsyncURLStatus
object that holds the resource contents and information about the request.
in AsyncURLStatus status | An object representing the HTTP response. |
This interface captures several aspects of an HTTP response in order to be
passed to the operationComplete
method upon completion of
an HTTP request.
interface AsyncURLStatus { readonly attribute boolean success; readonly attribute DOMString contentType; readonly attribute DOMString content; };
A boolean field indicating whether the request succeeded or not.
For HTTP requests with response status codes in the 200 range, this attribute must be set to true, and for status codes in the 400 and 500 ranges it must be set to false. Status codes in the 100 range must be ignored and those in the 300 range must be processed as indicated in getURL's processing requirements.
When fetching non-HTTP resources, this attribute must be set to true if the resource was successfully retrieved in full, and false otherwise.
A string containing the media type of the response.
For HTTP requests, this attribute must be set to the value of the
Content-Type HTTP header. If there was no Content-Type header,
the attribute must be set to null
.
When fetching non-HTTP resources, this attribute must be set to
null
.
A string containing the contents of the fetched resource.
If the resource is not a valid sequence of characters (as interpreted according to the media type and other headers for an HTTP request, or as appropriate for non-HTTP resources), then this attribute must be set to null.
For HTTP requests, if the media type of the response body was in the
text/*
hierarchy and specified a charset parameter, then the text
must be converted into the host programming language's native form
if the encoding is supported. If the encoding is not supported, the
value of this field must be null
. The only required encodings are
UTF-8 and UTF-16 (BE and LE). If the HTTP response body had one or
more content codings applied to it then it must be fully decoded
before setting this field. If the HTTP response status code was an
error code but carried a body, the content of that body must still
be exposed.
The EventListenerInitializer2 interface is used to provide a way for scripts written in languages that do not have a concept of a "global object" to initialize its event listeners. Specifically, it is used for Java event listeners, but this general approach is suggested for other such scripting languages. See the description of the 'script' element for details on how the object implementing EventListenerInitializer2 is discovered and used.
interface EventListenerInitializer2 { void initializeEventListeners(in Element scriptElement); EventListener createEventListener(in Element handlerElement); };
Invoked to indicate that the script given by the specified 'script' element should be executed.
in Element scriptElement | The 'script' element that identifies the script to execute. |
Invoked to obtain an EventListener that corresponds to the specified 'handler' element.
in Element handlerElement | The 'handler' element for which a corresponding EventListener is to be returned. |
EventListener | The EventListener. |