/* * encoding.c : implements the encoding conversion functions needed for XML * * Related specs: * rfc2044 (UTF-8 and UTF-16) F. Yergeau Alis Technologies * [ISO-10646] UTF-8 and UTF-16 in Annexes * [ISO-8859-1] ISO Latin-1 characters codes. * [UNICODE] The Unicode Consortium, "The Unicode Standard -- * Worldwide Character Encoding -- Version 1.0", Addison- * Wesley, Volume 1, 1991, Volume 2, 1992. UTF-8 is * described in Unicode Technical Report #4. * [US-ASCII] Coded Character Set--7-bit American Standard Code for * Information Interchange, ANSI X3.4-1986. * * Original code for IsoLatin1 and UTF-16 by "Martin J. Duerst" * * See Copyright for the status of this software. * * Daniel.Veillard@w3.org */ #ifdef WIN32 #include "win32config.h" #else #include "config.h" #endif #include #include #ifdef HAVE_CTYPE_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #include #include xmlCharEncodingHandlerPtr xmlUTF16LEHandler = NULL; xmlCharEncodingHandlerPtr xmlUTF16BEHandler = NULL; /* * From rfc2044: encoding of the Unicode values on UTF-8: * * UCS-4 range (hex.) UTF-8 octet sequence (binary) * 0000 0000-0000 007F 0xxxxxxx * 0000 0080-0000 07FF 110xxxxx 10xxxxxx * 0000 0800-0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx * * I hope we won't use values > 0xFFFF anytime soon ! */ /** * xmlCheckUTF8: Check utf-8 string for legality. * @utf: Pointer to putative utf-8 encoded string. * * Checks @utf for being valid utf-8. @utf is assumed to be * null-terminated. This function is not super-strict, as it will * allow longer utf-8 sequences than necessary. Note that Java is * capable of producing these sequences if provoked. Also note, this * routine checks for the 4-byte maxiumum size, but does not check for * 0x10ffff maximum value. * * Return value: true if @utf is valid. **/ int xmlCheckUTF8(const unsigned char *utf) { int ix; unsigned char c; for (ix = 0; (c = utf[ix]);) { if (c & 0x80) { if ((utf[ix + 1] & 0xc0) != 0x80) return(0); if ((c & 0xe0) == 0xe0) { if ((utf[ix + 2] & 0xc0) != 0x80) return(0); if ((c & 0xf0) == 0xf0) { if ((c & 0xf8) != 0xf0 || (utf[ix + 3] & 0xc0) != 0x80) return(0); ix += 4; /* 4-byte code */ } else /* 3-byte code */ ix += 3; } else /* 2-byte code */ ix += 2; } else /* 1-byte code */ ix++; } return(1); } /** * isolat1ToUTF8: * @out: a pointer to an array of bytes to store the result * @outlen: the length of @out * @in: a pointer to an array of ISO Latin 1 chars * @inlen: the length of @in * * Take a block of ISO Latin 1 chars in and try to convert it to an UTF-8 * block of chars out. * Returns the number of byte written, or -1 by lack of space. */ int isolat1ToUTF8(unsigned char* out, int outlen, const unsigned char* in, int *inlen) { unsigned char* outstart= out; unsigned char* outend= out+outlen; const unsigned char* inend= in+*inlen; unsigned char c; while (in < inend) { c= *in++; if (c < 0x80) { if (out >= outend) return(-1); *out++ = c; } else { if (out >= outend) return(-1); *out++ = 0xC0 | (c >> 6); if (out >= outend) return(-1); *out++ = 0x80 | (0x3F & c); } } return(out-outstart); } /** * UTF8Toisolat1: * @out: a pointer to an array of bytes to store the result * @outlen: the length of @out * @in: a pointer to an array of UTF-8 chars * @inlen: the length of @in * * Take a block of UTF-8 chars in and try to convert it to an ISO Latin 1 * block of chars out. * TODO: UTF8Toisolat1 need a fallback mechanism ... * * Returns the number of byte written, or -1 by lack of space, or -2 * if the transcoding fails (for *in is not valid utf8 string or * the result of transformation can't fit into the encoding we want) * The value of @inlen after return is the number of octets consumed * as the return value is positive, else unpredictiable. */ int UTF8Toisolat1(unsigned char* out, int outlen, const unsigned char* in, int *inlen) { unsigned char* outstart= out; unsigned char* outend= out+outlen; const unsigned char* inend= in+*inlen; unsigned char c; while (in < inend) { c= *in++; if (c < 0x80) { if (out >= outend) return(-1); *out++= c; } else if (in == inend) { *inlen -= 1; break; } else if (((c & 0xFC) == 0xC0) && ((*in & 0xC0) == 0x80)) { /* a two byte utf-8 and can be encoding as isolate1 */ *out++= ((c & 0x03) << 6) | (*in++ & 0x3F); } else return(-2); /* TODO : some should be represent as "&#x____;" */ } return(out-outstart); } /** * UTF16LEToUTF8: * @out: a pointer to an array of bytes to store the result * @outlen: the length of @out * @inb: a pointer to an array of UTF-16LE passwd as a byte array * @inlenb: the length of @in in UTF-16LE chars * * Take a block of UTF-16LE ushorts in and try to convert it to an UTF-8 * block of chars out. This function assume the endian properity * is the same between the native type of this machine and the * inputed one. * * Returns the number of byte written, or -1 by lack of space, or -2 * if the transcoding fails (for *in is not valid utf16 string) * The value of *inlen after return is the number of octets consumed * as the return value is positive, else unpredictiable. */ int UTF16LEToUTF8(unsigned char* out, int outlen, const unsigned char* inb, int *inlenb) { unsigned char* outstart= out; unsigned char* outend= out+outlen; unsigned short* in = (unsigned short*) inb; unsigned short* inend; unsigned int c, d, inlen; unsigned char *tmp; int bits; if ((*inlenb % 2) == 1) (*inlenb)--; inlen = *inlenb / 2; inend= in + inlen; while (in < inend) { #ifdef BIG_ENDIAN tmp = (unsigned char *) in; c = *tmp++; c = c | (((unsigned int)*tmp) << 8); in++; #else /* BIG_ENDIAN */ c= *in++; #endif /* BIG_ENDIAN */ if ((c & 0xFC00) == 0xD800) { /* surrogates */ if (in >= inend) { /* (in > inend) shouldn't happens */ (*inlenb) -= 2; break; } #ifdef BIG_ENDIAN tmp = (unsigned char *) in; d = *tmp++; d = d | (((unsigned int)*tmp) << 8); in++; #else /* BIG_ENDIAN */ d = *in++; #endif /* BIG_ENDIAN */ if ((d & 0xFC00) == 0xDC00) { c &= 0x03FF; c <<= 10; c |= d & 0x03FF; c += 0x10000; } else return(-2); } /* assertion: c is a single UTF-4 value */ if (out >= outend) return(-1); if (c < 0x80) { *out++= c; bits= -6; } else if (c < 0x800) { *out++= ((c >> 6) & 0x1F) | 0xC0; bits= 0; } else if (c < 0x10000) { *out++= ((c >> 12) & 0x0F) | 0xE0; bits= 6; } else { *out++= ((c >> 18) & 0x07) | 0xF0; bits= 12; } for ( ; bits >= 0; bits-= 6) { if (out >= outend) return(-1); *out++= ((c >> bits) & 0x3F) | 0x80; } } return(out-outstart); } /** * UTF8ToUTF16LE: * @outb: a pointer to an array of bytes to store the result * @outlen: the length of @outb * @in: a pointer to an array of UTF-8 chars * @inlen: the length of @in * * Take a block of UTF-8 chars in and try to convert it to an UTF-16LE * block of chars out. * TODO: UTF8ToUTF16LE need a fallback mechanism ... * * Returns the number of byte written, or -1 by lack of space, or -2 * if the transcoding failed. */ int UTF8ToUTF16LE(unsigned char* outb, int outlen, const unsigned char* in, int *inlen) { unsigned short* out = (unsigned short*) outb; unsigned short* outstart= out; unsigned short* outend; const unsigned char* inend= in+*inlen; unsigned int c, d, trailing; #ifdef BIG_ENDIAN unsigned char *tmp; unsigned short tmp1, tmp2; #endif /* BIG_ENDIAN */ outlen /= 2; /* convert in short length */ outend = out + outlen; while (in < inend) { d= *in++; if (d < 0x80) { c= d; trailing= 0; } else if (d < 0xC0) return(-2); /* trailing byte in leading position */ else if (d < 0xE0) { c= d & 0x1F; trailing= 1; } else if (d < 0xF0) { c= d & 0x0F; trailing= 2; } else if (d < 0xF8) { c= d & 0x07; trailing= 3; } else return(-2); /* no chance for this in UTF-16 */ if (inend - in < trailing) { *inlen -= (inend - in); break; } for ( ; trailing; trailing--) { if ((in >= inend) || (((d= *in++) & 0xC0) != 0x80)) return(-1); c <<= 6; c |= d & 0x3F; } /* assertion: c is a single UTF-4 value */ if (c < 0x10000) { if (out >= outend) return(-1); #ifdef BIG_ENDIAN tmp = (unsigned char *) out; *tmp = c ; *(tmp + 1) = c >> 8 ; out++; #else /* BIG_ENDIAN */ *out++ = c; #endif /* BIG_ENDIAN */ } else if (c < 0x110000) { if (out+1 >= outend) return(-1); c -= 0x10000; #ifdef BIG_ENDIAN tmp1 = 0xD800 | (c >> 10); tmp = (unsigned char *) out; *tmp = tmp1; *(tmp + 1) = tmp1 >> 8; out++; tmp2 = 0xDC00 | (c & 0x03FF); tmp = (unsigned char *) out; *tmp = tmp2; *(tmp + 1) = tmp2 >> 8; out++; #else /* BIG_ENDIAN */ *out++ = 0xD800 | (c >> 10); *out++ = 0xDC00 | (c & 0x03FF); #endif /* BIG_ENDIAN */ } else return(-1); } return(out-outstart); } /** * UTF16BEToUTF8: * @out: a pointer to an array of bytes to store the result * @outlen: the length of @out * @inb: a pointer to an array of UTF-16 passwd as a byte array * @inlenb: the length of @in in UTF-16 chars * * Take a block of UTF-16 ushorts in and try to convert it to an UTF-8 * block of chars out. This function assume the endian properity * is the same between the native type of this machine and the * inputed one. * * Returns the number of byte written, or -1 by lack of space, or -2 * if the transcoding fails (for *in is not valid utf16 string) * The value of *inlen after return is the number of octets consumed * as the return value is positive, else unpredictiable. */ int UTF16BEToUTF8(unsigned char* out, int outlen, const unsigned char* inb, int *inlenb) { unsigned char* outstart= out; unsigned char* outend= out+outlen; unsigned short* in = (unsigned short*) inb; unsigned short* inend; unsigned int c, d, inlen; #ifdef BIG_ENDIAN #else /* BIG_ENDIAN */ unsigned char *tmp; #endif /* BIG_ENDIAN */ int bits; if ((*inlenb % 2) == 1) (*inlenb)--; inlen = *inlenb / 2; inend= in + inlen; while (in < inend) { #ifdef BIG_ENDIAN c= *in++; #else tmp = (unsigned char *) in; c = *tmp++; c = c << 8; c = c | (unsigned int) *tmp; in++; #endif if ((c & 0xFC00) == 0xD800) { /* surrogates */ if (in >= inend) { /* (in > inend) shouldn't happens */ (*inlenb) -= 2; break; } #ifdef BIG_ENDIAN d= *in++; #else tmp = (unsigned char *) in; d = *tmp++; d = d << 8; d = d | (unsigned int) *tmp; in++; #endif if ((d & 0xFC00) == 0xDC00) { c &= 0x03FF; c <<= 10; c |= d & 0x03FF; c += 0x10000; } else return(-2); } /* assertion: c is a single UTF-4 value */ if (out >= outend) return(-1); if (c < 0x80) { *out++= c; bits= -6; } else if (c < 0x800) { *out++= ((c >> 6) & 0x1F) | 0xC0; bits= 0; } else if (c < 0x10000) { *out++= ((c >> 12) & 0x0F) | 0xE0; bits= 6; } else { *out++= ((c >> 18) & 0x07) | 0xF0; bits= 12; } for ( ; bits >= 0; bits-= 6) { if (out >= outend) return(-1); *out++= ((c >> bits) & 0x3F) | 0x80; } } return(out-outstart); } /** * UTF8ToUTF16BE: * @outb: a pointer to an array of bytes to store the result * @outlen: the length of @outb * @in: a pointer to an array of UTF-8 chars * @inlen: the length of @in * * Take a block of UTF-8 chars in and try to convert it to an UTF-16BE * block of chars out. * TODO: UTF8ToUTF16BE need a fallback mechanism ... * * Returns the number of byte written, or -1 by lack of space, or -2 * if the transcoding failed. */ int UTF8ToUTF16BE(unsigned char* outb, int outlen, const unsigned char* in, int *inlen) { unsigned short* out = (unsigned short*) outb; unsigned short* outstart= out; unsigned short* outend; const unsigned char* inend= in+*inlen; unsigned int c, d, trailing; #ifdef BIG_ENDIAN #else unsigned char *tmp; unsigned short tmp1, tmp2; #endif /* BIG_ENDIAN */ outlen /= 2; /* convert in short length */ outend = out + outlen; while (in < inend) { d= *in++; if (d < 0x80) { c= d; trailing= 0; } else if (d < 0xC0) return(-2); /* trailing byte in leading position */ else if (d < 0xE0) { c= d & 0x1F; trailing= 1; } else if (d < 0xF0) { c= d & 0x0F; trailing= 2; } else if (d < 0xF8) { c= d & 0x07; trailing= 3; } else return(-2); /* no chance for this in UTF-16 */ if (inend - in < trailing) { *inlen -= (inend - in); break; } for ( ; trailing; trailing--) { if ((in >= inend) || (((d= *in++) & 0xC0) != 0x80)) return(-1); c <<= 6; c |= d & 0x3F; } /* assertion: c is a single UTF-4 value */ if (c < 0x10000) { if (out >= outend) return(-1); #ifdef BIG_ENDIAN *out++ = c; #else tmp = (unsigned char *) out; *tmp = c >> 8; *(tmp + 1) = c; out++; #endif /* BIG_ENDIAN */ } else if (c < 0x110000) { if (out+1 >= outend) return(-1); c -= 0x10000; #ifdef BIG_ENDIAN *out++ = 0xD800 | (c >> 10); *out++ = 0xDC00 | (c & 0x03FF); #else tmp1 = 0xD800 | (c >> 10); tmp = (unsigned char *) out; *tmp = tmp1 >> 8; *(tmp + 1) = tmp1; out++; tmp2 = 0xDC00 | (c & 0x03FF); tmp = (unsigned char *) out; *tmp = tmp2 >> 8; *(tmp + 1) = tmp2; out++; #endif } else return(-1); } return(out-outstart); } /** * xmlDetectCharEncoding: * @in: a pointer to the first bytes of the XML entity, must be at least * 4 bytes long. * @len: pointer to the length of the buffer * * Guess the encoding of the entity using the first bytes of the entity content * accordingly of the non-normative appendix F of the XML-1.0 recommendation. * * Returns one of the XML_CHAR_ENCODING_... values. */ xmlCharEncoding xmlDetectCharEncoding(const unsigned char* in, int len) { if (len >= 4) { if ((in[0] == 0x00) && (in[1] == 0x00) && (in[2] == 0x00) && (in[3] == 0x3C)) return(XML_CHAR_ENCODING_UCS4BE); if ((in[0] == 0x3C) && (in[1] == 0x00) && (in[2] == 0x00) && (in[3] == 0x00)) return(XML_CHAR_ENCODING_UCS4LE); if ((in[0] == 0x00) && (in[1] == 0x00) && (in[2] == 0x3C) && (in[3] == 0x00)) return(XML_CHAR_ENCODING_UCS4_2143); if ((in[0] == 0x00) && (in[1] == 0x3C) && (in[2] == 0x00) && (in[3] == 0x00)) return(XML_CHAR_ENCODING_UCS4_3412); if ((in[0] == 0x4C) && (in[1] == 0x6F) && (in[2] == 0xA7) && (in[3] == 0x94)) return(XML_CHAR_ENCODING_EBCDIC); if ((in[0] == 0x3C) && (in[1] == 0x3F) && (in[2] == 0x78) && (in[3] == 0x6D)) return(XML_CHAR_ENCODING_UTF8); } if (len >= 2) { if ((in[0] == 0xFE) && (in[1] == 0xFF)) return(XML_CHAR_ENCODING_UTF16BE); if ((in[0] == 0xFF) && (in[1] == 0xFE)) return(XML_CHAR_ENCODING_UTF16LE); } return(XML_CHAR_ENCODING_NONE); } /** * xmlParseCharEncoding: * @name: the encoding name as parsed, in UTF-8 format (ASCII actually) * * Conpare the string to the known encoding schemes already known. Note * that the comparison is case insensitive accordingly to the section * [XML] 4.3.3 Character Encoding in Entities. * * Returns one of the XML_CHAR_ENCODING_... values or XML_CHAR_ENCODING_NONE * if not recognized. */ xmlCharEncoding xmlParseCharEncoding(const char* name) { char upper[500]; int i; for (i = 0;i < 499;i++) { upper[i] = toupper(name[i]); if (upper[i] == 0) break; } upper[i] = 0; if (!strcmp(upper, "")) return(XML_CHAR_ENCODING_NONE); if (!strcmp(upper, "UTF-8")) return(XML_CHAR_ENCODING_UTF8); if (!strcmp(upper, "UTF8")) return(XML_CHAR_ENCODING_UTF8); /* * NOTE: if we were able to parse this, the endianness of UTF16 is * already found and in use */ if (!strcmp(upper, "UTF-16")) return(XML_CHAR_ENCODING_UTF16LE); if (!strcmp(upper, "UTF16")) return(XML_CHAR_ENCODING_UTF16LE); if (!strcmp(upper, "ISO-10646-UCS-2")) return(XML_CHAR_ENCODING_UCS2); if (!strcmp(upper, "UCS-2")) return(XML_CHAR_ENCODING_UCS2); if (!strcmp(upper, "UCS2")) return(XML_CHAR_ENCODING_UCS2); /* * NOTE: if we were able to parse this, the endianness of UCS4 is * already found and in use */ if (!strcmp(upper, "ISO-10646-UCS-4")) return(XML_CHAR_ENCODING_UCS4LE); if (!strcmp(upper, "UCS-4")) return(XML_CHAR_ENCODING_UCS4LE); if (!strcmp(upper, "UCS4")) return(XML_CHAR_ENCODING_UCS4LE); if (!strcmp(upper, "ISO-8859-1")) return(XML_CHAR_ENCODING_8859_1); if (!strcmp(upper, "ISO-LATIN-1")) return(XML_CHAR_ENCODING_8859_1); if (!strcmp(upper, "ISO LATIN 1")) return(XML_CHAR_ENCODING_8859_1); if (!strcmp(upper, "ISO-8859-2")) return(XML_CHAR_ENCODING_8859_2); if (!strcmp(upper, "ISO-LATIN-2")) return(XML_CHAR_ENCODING_8859_2); if (!strcmp(upper, "ISO LATIN 2")) return(XML_CHAR_ENCODING_8859_2); if (!strcmp(upper, "ISO-8859-3")) return(XML_CHAR_ENCODING_8859_3); if (!strcmp(upper, "ISO-8859-4")) return(XML_CHAR_ENCODING_8859_4); if (!strcmp(upper, "ISO-8859-5")) return(XML_CHAR_ENCODING_8859_5); if (!strcmp(upper, "ISO-8859-6")) return(XML_CHAR_ENCODING_8859_6); if (!strcmp(upper, "ISO-8859-7")) return(XML_CHAR_ENCODING_8859_7); if (!strcmp(upper, "ISO-8859-8")) return(XML_CHAR_ENCODING_8859_8); if (!strcmp(upper, "ISO-8859-9")) return(XML_CHAR_ENCODING_8859_9); if (!strcmp(upper, "ISO-2022-JP")) return(XML_CHAR_ENCODING_2022_JP); if (!strcmp(upper, "Shift_JIS")) return(XML_CHAR_ENCODING_SHIFT_JIS); if (!strcmp(upper, "EUC-JP")) return(XML_CHAR_ENCODING_EUC_JP); return(XML_CHAR_ENCODING_ERROR); } /**************************************************************** * * * Char encoding handlers * * * ****************************************************************/ /* the size should be growable, but it's not a big deal ... */ #define MAX_ENCODING_HANDLERS 50 static xmlCharEncodingHandlerPtr *handlers = NULL; static int nbCharEncodingHandler = 0; /* * The default is UTF-8 for XML, that's also the default used for the * parser internals, so the default encoding handler is NULL */ static xmlCharEncodingHandlerPtr xmlDefaultCharEncodingHandler = NULL; /** * xmlNewCharEncodingHandler: * @name: the encoding name, in UTF-8 format (ASCII actually) * @input: the xmlCharEncodingInputFunc to read that encoding * @output: the xmlCharEncodingOutputFunc to write that encoding * * Create and registers an xmlCharEncodingHandler. * Returns the xmlCharEncodingHandlerPtr created (or NULL in case of error). */ xmlCharEncodingHandlerPtr xmlNewCharEncodingHandler(const char *name, xmlCharEncodingInputFunc input, xmlCharEncodingOutputFunc output) { xmlCharEncodingHandlerPtr handler; char upper[500]; int i; char *up = 0; /* * Keep only the uppercase version of the encoding. */ if (name == NULL) { fprintf(stderr, "xmlNewCharEncodingHandler : no name !\n"); return(NULL); } for (i = 0;i < 499;i++) { upper[i] = toupper(name[i]); if (upper[i] == 0) break; } upper[i] = 0; up = xmlMemStrdup(upper); if (up == NULL) { fprintf(stderr, "xmlNewCharEncodingHandler : out of memory !\n"); return(NULL); } /* * allocate and fill-up an handler block. */ handler = (xmlCharEncodingHandlerPtr) xmlMalloc(sizeof(xmlCharEncodingHandler)); if (handler == NULL) { fprintf(stderr, "xmlNewCharEncodingHandler : out of memory !\n"); return(NULL); } handler->input = input; handler->output = output; handler->name = up; /* * registers and returns the handler. */ xmlRegisterCharEncodingHandler(handler); return(handler); } /** * xmlInitCharEncodingHandlers: * * Initialize the char encoding support, it registers the default * encoding supported. * NOTE: while public, this function usually doesn't need to be called * in normal processing. */ void xmlInitCharEncodingHandlers(void) { if (handlers != NULL) return; handlers = (xmlCharEncodingHandlerPtr *) xmlMalloc(MAX_ENCODING_HANDLERS * sizeof(xmlCharEncodingHandlerPtr)); if (handlers == NULL) { fprintf(stderr, "xmlInitCharEncodingHandlers : out of memory !\n"); return; } xmlNewCharEncodingHandler("UTF-8", NULL, NULL); xmlUTF16LEHandler = xmlNewCharEncodingHandler("UTF-16LE", UTF16LEToUTF8, UTF8ToUTF16LE); xmlUTF16BEHandler = xmlNewCharEncodingHandler("UTF-16BE", UTF16BEToUTF8, UTF8ToUTF16BE); xmlNewCharEncodingHandler("ISO-8859-1", isolat1ToUTF8, UTF8Toisolat1); } /** * xmlCleanupCharEncodingHandlers: * * Cleanup the memory allocated for the char encoding support, it * unregisters all the encoding handlers. */ void xmlCleanupCharEncodingHandlers(void) { if (handlers == NULL) return; for (;nbCharEncodingHandler > 0;) { nbCharEncodingHandler--; if (handlers[nbCharEncodingHandler] != NULL) { xmlFree(handlers[nbCharEncodingHandler]->name); xmlFree(handlers[nbCharEncodingHandler]); } } xmlFree(handlers); handlers = NULL; nbCharEncodingHandler = 0; xmlDefaultCharEncodingHandler = NULL; } /** * xmlRegisterCharEncodingHandler: * @handler: the xmlCharEncodingHandlerPtr handler block * * Register the char encoding handler, surprizing, isn't it ? */ void xmlRegisterCharEncodingHandler(xmlCharEncodingHandlerPtr handler) { if (handlers == NULL) xmlInitCharEncodingHandlers(); if (handler == NULL) { fprintf(stderr, "xmlRegisterCharEncodingHandler: NULL handler !\n"); return; } if (nbCharEncodingHandler >= MAX_ENCODING_HANDLERS) { fprintf(stderr, "xmlRegisterCharEncodingHandler: Too many handler registered\n"); fprintf(stderr, "\tincrease MAX_ENCODING_HANDLERS : %s\n", __FILE__); return; } handlers[nbCharEncodingHandler++] = handler; } /** * xmlGetCharEncodingHandler: * @enc: an xmlCharEncoding value. * * Search in the registrered set the handler able to read/write that encoding. * * Returns the handler or NULL if not found */ xmlCharEncodingHandlerPtr xmlGetCharEncodingHandler(xmlCharEncoding enc) { if (handlers == NULL) xmlInitCharEncodingHandlers(); switch (enc) { case XML_CHAR_ENCODING_ERROR: return(NULL); case XML_CHAR_ENCODING_NONE: return(NULL); case XML_CHAR_ENCODING_UTF8: return(NULL); case XML_CHAR_ENCODING_UTF16LE: return(xmlUTF16LEHandler); case XML_CHAR_ENCODING_UTF16BE: return(xmlUTF16BEHandler); case XML_CHAR_ENCODING_EBCDIC: return(NULL); case XML_CHAR_ENCODING_UCS4LE: return(NULL); case XML_CHAR_ENCODING_UCS4BE: return(NULL); case XML_CHAR_ENCODING_UCS4_2143: return(NULL); case XML_CHAR_ENCODING_UCS4_3412: return(NULL); case XML_CHAR_ENCODING_UCS2: return(NULL); case XML_CHAR_ENCODING_8859_1: return(NULL); case XML_CHAR_ENCODING_8859_2: return(NULL); case XML_CHAR_ENCODING_8859_3: return(NULL); case XML_CHAR_ENCODING_8859_4: return(NULL); case XML_CHAR_ENCODING_8859_5: return(NULL); case XML_CHAR_ENCODING_8859_6: return(NULL); case XML_CHAR_ENCODING_8859_7: return(NULL); case XML_CHAR_ENCODING_8859_8: return(NULL); case XML_CHAR_ENCODING_8859_9: return(NULL); case XML_CHAR_ENCODING_2022_JP: case XML_CHAR_ENCODING_SHIFT_JIS: case XML_CHAR_ENCODING_EUC_JP: return(NULL); } return(NULL); } /** * xmlGetCharEncodingHandler: * @enc: a string describing the char encoding. * * Search in the registrered set the handler able to read/write that encoding. * * Returns the handler or NULL if not found */ xmlCharEncodingHandlerPtr xmlFindCharEncodingHandler(const char *name) { char upper[500]; int i; if (handlers == NULL) xmlInitCharEncodingHandlers(); if (name == NULL) return(xmlDefaultCharEncodingHandler); if (name[0] == 0) return(xmlDefaultCharEncodingHandler); for (i = 0;i < 499;i++) { upper[i] = toupper(name[i]); if (upper[i] == 0) break; } upper[i] = 0; for (i = 0;i < nbCharEncodingHandler; i++) if (!strcmp(name, handlers[i]->name)) return(handlers[i]); return(NULL); }