Testing Interoperability of SML & SML-IF Implementations
Change Log:

	Date
	Person
	Remarks

	4/4/2008
	Kumar Pandit
	Created initial draft.

	9/24/08
	Kumar Pandit
	Updated base on group’s comment on 9/18 and 9/11/08.

	10/5/2008
	Kumar Pandit
	Added Ginny’s text in section 2. Other updates based on WG discussion on 10/2/2008.

	12/11/08
	Len Charest
	Updated section 3 to reflect the directories actually created in CVS.


1. Overview

In order to progress from Candidate Recommendation status to Proposed Recommendation, SML and SML-IF must satisfy the exit criteria for Candidate Recommendation agreed upon by the Director and the chairs of the SML Working Group. At a minimum, the W3C process document requires that each specification have at least one implementation of each feature, and preferably two inter-operable implementations; additional exit criteria may be (and often are) agreed by the Director and chairs. As a consequence, the basic requirement for our test plan is that the SML WG must construct a test suite suitable for documenting (a) which features of the spec have been implemented and (b) for each feature implemented more than once, whether the implementations are consistent and interoperable. This document defines the approach adopted by the SML working group to meet that goal.
This is defined in the following sections:
1. Test packaging

2. Test storage and organization
3. Test execution

4. Analyzing test results
5. Test Cases

2. Test Packaging
Each test involves processing a set of schema, rule, and instance documents that constitute the SML model. SML-IF provides a convenient way to specify all documents required for each test. Therefore, each test will be represented by an SML-IF document. 

The packaging of the schema, rule, and instance documents for a test can occur in one of two ways. The documents for each test can be kept in the test’s SML-IF document to completely encapsulate each test or they can be kept as separate documents that could (potentially) be reused across several tests and referenced from the SML-IF document. 

One, or both, of the following approaches may be used to construct a test.

1. Keep each schema, rule, and instance document for a test in separate files and, possibly, reuse documents across multiple tests. The test’s SML-IF document will reference these files via the <locator> element. There are several ramifications of this approach:

a. If a file is used in several tests, changes to a single file potentially affects multiple tests. This can help when making the same change across multiple tests but can also cause a test to fail if the change has an inconsistent effect across multiple tests.

b. Sending a complete test case to someone requires gathering the files that are part of the test and combining these files into a package suitable for transfer. This package must contain all the test files, including the SML-IF document that references them or may just be the SML-IF document with all files embedded.

c. Some consumers may not support the <locator> element since it is optional. In this case, some test harness code may be required to insert the referenced documents into the SML-IF document prior to test execution.

d. This approach will be required to test the <locator> element.


2. Keep all the schema, rule, and instance document for a test embedded in the test’s SML-IF document. There are several ramifications of this approach:

a. Changes to each test are localized to that test. This can also cause multiple files to be changed if the same change has to be made across (similar) tests but could also serve to isolate changes to a single test.

b. No special packaging is needed to send out the test case since the test’s SML-IF document is already complete.

c. All SML-IF consumers will be able to process this file with no additional test harness code since the <locator> element is not used.

d. If we do not anticipate reuse of the test documents, this is the simpler approach for the previous reasons.


3. 
a. 
b. 
c. 
d. 
4. 
a. 
b. 
c. 
d. 

Tests that test the locator element typically use more than one file per test. All other tests use a single SML-IF file that directly embeds necessary model documents.
3. Test Storage and Organization
Test cases and associated files are stored on W3C servers so that they can be accessed by people who need them. There are fewer than 200 test cases that cover SML & SML-IF. This allows the test cases to be stored in a relatively flat directory structure. They are stored under the sml directory in the CVS repository as shown below.
· public/2007/xml/sml
· tests
· required-features
· optional-features
· documentation
The required-features directory has the SML-IF files that contain tests for the required features.

The optional-features directory has the SML-IF files that contain tests for the optional features.

The documentation directory has test documentation, including this document.
4. Test Execution
How the test case files are supplied to a test harness and how the test harness is invoked depends on each implementation. This document does not define requirements for the following:

1. Hardware configuration

2. Operating System or its version

3. Test execution behavior of any test harness. 
5. Analyzing Test Results
As mentioned earlier the SML working group is required to have at least one implementation of each SML & SML-IF feature and at least two inter-operable implementations. The process of determining whether all features are covered by the test cases cannot be automated. The working group must determine this based on a review of the test cases. However, the inter-operability can be determined in an automated fashion.
For the purpose of this test plan, two implementations are said to be interoperable if they produce identical model validation result for each test case that tests a required feature of SML and SML-IF. Two implementations are allowed to produce a different model validation result for a test case that tests an optional feature. 
Comparing test results is trivial where the results indicate a valid model. Comparing test results where a model is invalid is not so easy. This is because a model could be invalid because of a number of reasons and the SML & SML-IF specifications do not define an inter-operable way to encode or compare the reasons. This is because of the following:
1. The SML specification does not define the order in which model validity assessment steps must be carried out. One implementation may evaluate id constraints before Schematron constraints and some other implementation may do it in the reverse order.
2. The SML specification does not define whether model validation must stop at the first error and whether all possible errors are returned to the invoker. This combined with the previous item can result in two implementations producing two different results for the same invalid model.
3. The SML/SML-IF specifications do not define specific error codes or error messages that represent an error condition. This means that even though two implementations find the same error in a model, they may produce different error codes/messages. There is no inter-operable way to compare them.
As a result of these difficulties, this test document does not require automated granular comparison of test results between two different implementations. The result comparison is limited to comparing model validity as a Boolean value. 
Each participating implementation must pass all tests that test features supported by that implementation. A test is said to pass if the actual model validity result, expressed as a Boolean value, is identical to the expected result. If an implementation produces descriptive error messages when model validity is assessed, such messages are compared manually with the results from other implementations for the same model. The comparison of such error messages cannot be automated for reasons mentioned earlier. If two implementations produce different descriptive error messages for a given model then those messages may be used for diagnosing potential bugs in the implementations. However, despite differing error messages for a test, as long as an implementation produces the expected model validity result then it passes that test.
The name of each test file includes the test name followed by the expected result. This obviates the need to maintain a separate test metadata file. For example,
id-constraint-KeyMissing-invalid.xml
ref-dangling-valid.xml
6. Test Cases
As defined earlier, model validation results are compared as a Boolean value. Test cases are written such that they focus on a single issue at a time and consequently they result in a single model validation error. This avoids ambiguity in cases where a model may be invalid due to multiple reasons.


The following sections lists all test cases used for interoperability testing. They are divided in 2 parts,
1. Tests for required features:
 These features are "required" in the sense that conforming processors must support them. Each participating implementation must pass all tests that test features supported by that implementation.
2. Tests for optional features:
Not all implementations support optional features. As a consequence of this, if the spec prescribes or allows different behavior when a feature is supported vs. not supported, then two implementations may exhibit different behaviors if the one implementation supports the feature and the other doesn't. The results of tests in this group are not compared against the results of the same tests for other implementations. The results are only used to assess whether an implementation correctly implements a given optional feature. 
Tests for Required Features
tbd
Tests for Optional Features

Tbd
Open Issues

1. 
2. 
3. 
4. 
5. 
12/11/2008 12:45 PM 

Page 3 of 5

