
W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Developer Manual

Version of this document: 0.5 (Draft)

Date of Release: 2008-02-04

Editors: Abel Rionda, Ignacio Marin (Fundación CTIC)

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Contents

1 INTRODUCTION..4

1.1 PURPOSE AND AUDIENCE..4
1.2 COPYRIGHT ISSUES...4
1.3 STRUCTURE...5

2 DOWNLOAD AND INSTALLATION..6

2.1 BINARY ARCHIVE DOWNLOAD...6
2.2 SOURCE CODE DOWNLOAD (FROM CVS REPOSITORY)..6

3 SOFTWARE REQUIREMENTS (USE CASES)..6

3.1 LICENSING..6
3.2 CONFORMANCE..7
3.3 DEPLOYMENT/USE CASES...7
3.4 STRUCTURE...7
3.5 PROCESS...8

4 DESIGN..8

4.1 HIGH LEVEL DESIGN..8
4.1.1Input..9

4.1.2Implementation..9

4.1.3Output..10

4.2 MAIN CLASSES INVOLVED IN PREPROCESSING PHASE...10
4.2.1Static View...10

4.2.1.1Tester class...10
4.2.1.2Preproccesor class..10
4.2.1.3PreprocessorResults class..10

4.2.2Dynamic View...11

4.3 MAIN CLASSES INVOLVED IN TEST IMPLEMENTATION PHASE...13
4.3.1Static View...13

4.3.1.1Results of the library..13
4.3.1.2Implementation of the tests..15

4.3.2Dynamic View...17

4.3.3Some notes about XSLT...17

4.4 JUNIT TESTS...17
4.4.1Executing JUnit tests...18

4.4.2Notes on how the tests are written..19

4.5 IMPLEMENTATION DECISIONS...20
4.6 THIRD-PARTIES SOFTWARE...20

5 COOKBOOK..20

5.1 BASIC JAVA USAGE...21
5.2 SETTING ADDITIONAL HEADERS...21
5.3 USING MOKI DOCUMENT FOR OTHER PURPOSES..21

6 EXTENDING THE LIBRARY...23

7 IDENTIFIED IMPROVEMENTS AND EXTENSIONS...23

7.1 CSS IN XML..23
7.2 ENCAPSULATING THIRD-PARTIES SOFTWARE IN MOKI ...23

8 KNOWN ISSUES...24

8.1 ABOUT W3C MOBILEOK CHECKER 1.0B...24
8.2 ABOUT THIS DEVELOPER MANUAL...24

9 REFERENCES...25

Developer Manual, page 2 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

10 ACKNOWLEDGEMENTS...26

Illustration Index

Illustration 1: High Level Design...9

Illustration 2: Preprocessing phase overview..11

Illustration 3: Sequence Diagram for the getPreprocessorResults method...12

Illustration 4: Sequence Diagram for the getMokiDocument method..13

Illustration 5: Main classes involved in Test Implementation phase..14

Illustration 6: Test Implementation Inheritance..15

Illustration 7: XSLT Test implementation..16

Illustration 8: CSS Test Implementation..16

Illustration 9: Sequence Diagram for the runTests method..17

Illustration 10: Execution of a JUnit test: main class...18

Illustration 11: Execution of a JUnit test (program arguments)...19

Developer Manual, page 3 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

1 Introduction

1.1 Purpose and Audience

This document is meant to serve as a Developer Manual for the W3C mobileOK Basic Tests 1.0
Checker (Beta Release). Current version of this Developer Manual is a draft, so the editors intend to
write new versions correcting typos and errors and inserting new and more complete and accurate
information.

The version of the mobileOK Checker subject to comments in this document is the second public
release of the checker (a Beta version after the first Alpha version). A final version of this software, of
this User Manual and of the Developer Manual are expected later in 2008.

The audience of this document are developers being aware of the need to check conformance of web
resources (and also of the way in which they are delivered) against W3C mobileOK Basic Tests 1.0
and the need to implement conformance checking tools based on those tests. The W3C mobileOK
Checker is a software tool, created by means of collaboration among different organizations (see
Acknowledgements). The intention of such Task Force is to create a Reference Implementation so the
W3C mobileOK Basic Tests 1.0 document can become a W3C Recommendation. This checker allows
users to pass mobileOK Tests on a given web resource.

W3C mobileOK Basic tests implement the way in which some of the Best Practices in the W3C
Mobile Web Best Practices (Basic Guidelines) 1.0 document can be checked against web resources.
The term “some” refers to all those Best Practices that can be verified by a machine (i.e., which can be
described as an algorythm). Those Best Practices which can not be described as an algorythm (needing
the assessment of a human expert) are covered by the future W3C Mobile OK Pro Tests document,
still in development.

This document is accompanied by the W3C mobileOK Basic Tests 1.0 Checker User Manual. While
this Developer Manual describes the internal architecture, design and implementation details of the
W3C mobileOK Checker software tool as it would be interesting for developers willing to modify,
extend or enhance the functionality of the tool or even willing to integrate it with their own software or
services the User Manual tries to explain the W3C mobileOK Checker as a black box and to cover all
the subjects of interest to anyone trying to use the tool as-is.

The W3C mobileOK Checker 1.0b, its User Manual and Developer Manual, the W3C mobileOK Tests
1.0 and the W3C Mobile Web Best Practices (Basic Guidelines) 1.0 are efforts taking place under the
framework of the W3C Mobile Web Best Practices working group (part of the W3C Mobile Web
Initiative).

1.2 Copyright Issues

The W3C mobileOK Basic Tests 1.0 Checker software tool software tool and related documents (User
Manual and Developer Manual) are released under the W3C License, in its current version at the very
moment of the release of this document.

Several external Java libraries and software tools are used by the W3C mobileOK Basic Tests 1.0
Checker. Their use is subject to different licenses and copyright clauses. The binary distribution for
the W3C mobileOK Checker and its source code in W3C's CVS repository contains the licenses and
copyright claims to which each of them are subjected.

Developer Manual, page 4 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Eclipse, the IDE used as example in this documentation, is released under the Eclipse Public License
v1.0 in the version used for the screenshots taken.

1.3 Structure

This document is divided into several sections, which are now briefly described:

● Introduction: Current section, where the general purpose of this document and of the target
software tool (W3C mobileOK Basic Tests 1.0 Checker) is commented, including related
W3C activities and documents.

● Download and installation: This section describes how to download the Java executable binary
file (in JAR format) for the W3C mobileOK Checker, how to optionally download the source
files for the software and the library dependencies for the Checker.

● Software Requirements (Use Cases): Description of software requirements for the W3C
mobileOK Checker.

● Design: This section explains the software design using UML artifacts. In addition, other
aspects of the development, such as the unit testing, are introduced.

● Cookbook: Several examples to illustrate how to use the checker from Java code.

● Extending the library: Implementation decisions which should be taken into account by
someone who is interested into extending the library.

● Identified improvements and extensions: Issues regarding future improvements of the
Checker.

● Known issues: Issues regarding known bugs and future improvements of the Checker, and
missing information (that will be included in future versions) in this Developer Manual.

● References: Documents interesting for readers, which might help them to understand this
document, the W3C mobileOK Checker 1.0b software tool and all related work of the W3C
Mobile Web Best Practices working group.

● Acknowledgements: Credits to the people who helped developing this Developer Manual and
the W3C mobileOK Basic Tests 1.0 Checker software tool.

Developer Manual, page 5 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

2 Download and installation

2.1 Binary archive download

The Java binary executable JAR file is downloadable at:

http://dev.w3.org/cvsweb/2007/mobileok-ref/

The existing version of the W3C mobileOK Basic Tests 1.0 Checker when releasing this document is
available at:

http://dev.w3.org/cvsweb/~checkout~/2007/mobileok-ref/mobileOK-Basic-RI-1.0-deploy.jar?
rev=1.8&content-type=text/plain&only_with_tag=HEAD

2.2 Source code download (from CVS repository)

The source files corresponding to the JAR file mentioned in 2.1 are available in W3C's CVS
repository at :pserver:anonymous@dev.w3.org/public/sources/2007/mobileok-ref (password for
anonymous user is anonymous). If the previous URL does not work, the specific data for CVS access
are commented below:

● Host: dev.w3.org

● Repository path: /sources/public

● User: anonymous

● Password: anonymous

● Connection type: pserver

● Port: default pserver port (2401)

● Specified module name: 2007/mobileok-ref.

● Available branches: Only HEAD. No other branches expected in the future.

Please take into account that, in order to be able to deal with the source code as a developer, you might
need to read this W3C mobileOK Basic Tests 1.0 Checker Developer Manual.

3 Software Requirements (Use Cases)
This section is based on the Software Requirements set for the W3C mobileOK Basic Tests 1.0
Checker as defined in the thread of the mailing list of the Task Force in charge of the development of
the tool (http://lists.w3.org/Archives/Public/public-mobileok-checker/2007Mar/0009.html) .

3.1 Licensing

The output of the group's work is to be open source and is to be freely licensed under the terms of
license specified in the Copyright Issues section of this document.

Developer Manual, page 6 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

3.2 Conformance

 1. The output of the reference checker MUST state which version of mobileOK is being
checked against and MUST state its own version number.

 2. The checker assesses conformance with a number of standards and recommendations
other than mobileOK (external standards).

 3. Where possible the checker SHOULD NOT create independent implementations of
external standards conformance checkers and should use accredited, where possible, or de
facto standard implementations.

3.3 Deployment/Use Cases

It is the intention that the checker will be a component of the following deployments:

 1. As a component of a public service where users type a URI for checking into a user
interface.

 2. As a component of a public service which offers a programmatic interface for use
remotely by other programs.

 3. As part of an IDE.

3.4 Structure

1. The checker will have a manifest architecture that is documented separately from its
code.

2. Input to the checker will be specified by URI.

3. Other inputs to include varying the request headers and request partial execution of the
tests.

4. The checker will be written in Java.

5. The checker development project will not develop a user interface except as necessary for
testing it, but the use case of its deployment in a human request / response environment
should be borne in mind. Specifically this should not be seen as a project to create the
W3C mobileOK checker.

6. The checker will create an intermediate document that makes available for inspection all
details of retrievals, validation and other pre-processing required in order to carry out the
tests. The format of this intermediate document will be specified separately, and will use
existing representations [like RDF/HTTP] where possible.

1. To take account of the possibility of input documents that are not well-formed or
that may be invalid (or may just be binary), the checker will embed them in the
intermediate document in a form that preserves the integrity of the input
document while making it possible to reconstruct the original document.

2. To allow processing of mal-formed and invalid primary input documents (those
that are the subject of the test, rather than resources that are referenced) the pre-
processing will provide a 'cleaned up' version and that the nature of the clean-up
needs to be explicit and not implementation dependent.

3. The intermediate document is to be suitable for audit purposes and MUST
contain sufficient information to justify test results.

Developer Manual, page 7 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4. It will contain the external resources required to complete the tests together with
their retrieval information and validity information.

5. HTTP parameters and their values should be recorded in a normalised form as
well as being recorded in their original form.

7. The checker will produce a test report document describing the results of carrying out the
tests together with appropriate WARNs and other diagnostic information. The format of
the result document will be specified separately and will use appropriate existing
representations.

1. It must be possible to request the inclusion of the intermediate document as part
of the report.

3.5 Process

1. Source code and documentation for the project will be kept at W3C CVS repository, in a
project called W3C CVS Repository for mobileOK Checker.

4 Design

4.1 High Level Design

As it was mentioned, the checker is based on having a first phase of preprocessing or building an
intermediate document and a second phase of executing XSLT based tests against that intemediate
document. Because of that, main design classes can be clustered in these two phases.

Illustration 1 shows a high level architecture diagram. Note how the relationship between the input and
output of the library, and the library itself, are fulfilled.

Developer Manual, page 8 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4.1.1 Input

The input to the library is a main resource and others linked resources that are referenced from inside
this main resource (e.g. images, stylesheets). In addition, these resources can have another ones
embedded inside them (e.g a stylesheet that has an import directive inside).

4.1.2 Implementation

Preprocessor

The classes involved in this phase are in charged of building the intermediate document (a.k.a moki).
For this purpose, when the input is received, several objects are instantiated, mainly the ones that
represent the main document istself, images, objects, CSS and others linked resources.

Once these objects are built, the preprocessor phase finishes with the construction of the intermediate
document which structure can be found in the mobileOK Checker 1.0b User Manual document. Note
that this document has the sufficient information that enables the execution of the test in a declarative
way.

This intermediate document is the input for the next phase and it is one of the documents that is
returned as the output.

Test Implementation

Once the intermediate document is built, XSLT based tests are launched against this document using
XPath expressions. It is important to note that all tests are XSLT based except the ones related to CSS.
Currently, CSS tests are not declarative because CSS stuff is not serialized in the intermediate
document. This can be a future improvement (see Representation of CSS in XML) and so far there is a
first prototype of this serialization in the CVS repository.

Developer Manual, page 9 of 26

Illustration 1: High Level Design

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4.1.3 Output

The library produces, in addition to the intermediate document, a results document (which format is
presented in the mobileOK Checker 1.0b User Manual document) and a set of Test Result objects with
extra information.

4.2 Main classes involved in preprocessing phase

4.2.1 Static View

The key classes involved in preprocessing tasks can be identified in the class diagram in Illustration 2.

4.2.1.1 Tester class

This is the main class and the entry point to the library. A URI or a file is neccesary for the library to
be executed. This class has two essential attributes in this phase: Preproccesor and
PreprocessorResults.

4.2.1.2 Preproccesor class

This class is responsible for parsing the incoming resource and for creating the objects that can
represent such resource (main document, CSS, Images, and so on). These objects are kept by
ProcessorResults.

4.2.1.3 PreprocessorResults class

This class has all the necessary to build the intermediate document. This class keeps some other
classes to model HTTP resources, such as:

● HTTPXHTMLResource: This class represents the main resource retrieved and has several
attributes such as the DOM tree (and a tidied version), information about validation of the
markup and inline or embedded CSS (i.e. style attribute or style tag) contained inside it. In
general, there is a complete hierarchy starting from a basic HTTPResource (managing HTTP
connections, redirections and so on) to specific classes such as HTTPXHTMLResource or
HTTPImageResource. A common attibute for all these HTTP classes is a URI.

● CSSResource: This is the common interface for linked CSS resources (modelled as
HTTPCSSResource class), embedded CSS resources (EmbeddedCSSResource class) or inline
CSS resource (InlineCSSResource class). All these classes have information about the validity
of CSS (implemented using CSS Validator) and the content of CSS documents themselves.
One important issue is related to the section 2.4.8 of the W3C mobileOK Basic Tests 1.0
document [http://www.w3.org/TR/mobileOK-basic10-tests/#validity]. Basically, a CSS
resource is considered valid if it validates against CSS Level 1 grammar. On the other hand,
the presence of at-rules, properties or values or combinations of properties and values that are
not specified in CSS Level 1 does not constitute a validity failure for CSS. In this context, it
is needed to register both raw CSS and some kind of proccessed CSS (without estraneous
attributes) for the sake of validating against CSS Level 1. For this purpose all CSS
implementation classes have to take account of this.

● HTTPImageResource: It represents an image resource having attributes such as dimensions,
validation errors, and so on.

Developer Manual, page 10 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

● HTTPObjectResource: Represents an object resource with attributes such as content-type.

● MokiDocument: It contains a DOM tree with the intermediate document or moki. This
document is one of the output of the library.

4.2.2 Dynamic View

In Illustration 3, the sequence for creation of the objects representing the whole Web resource is
shown. This is triggered through the getPreprocessorResults() method of the Tester class. First of all,
an object representing the main document is created (HTTPXHTMLResource).This object provides
lists of URIs for images, CSS or links. For each of these lists, the Preprocessor object builds specific
ones for these elements (HTTPImageResource, HTTPCSSResource and so on). In some cases it is
necessary a further treatment of the information contained in these elements (e.g CSS External , CSS
Embedded or Images. See the note in the Diagram at Illustration 3 for more information on this).

Developer Manual, page 11 of 26

Illustration 2: Preprocessing phase overview

cd basic

Tester

{lea f}

- preprocessor: Preprocessor

- preprocessorResul ts: PreprocessorResu l ts

+ T ester(Fi le)

+ T ester(URI)

+ runT ests() : T estResul ts

+ runT ests(T estT ype) : T estResu l ts

+ getPreproccesorResu lts() : PreprocessorResu l ts

Preprocessor

{leaf}

- resu l ts: PreprocessorResu lts

~ Preprocessor(URI)

~ preprocess() : vo id

PreprocessorResults

{leaf}

- p rim aryDocum ent: HT T PXHT M LResource

- externa lStyleResources: List<HT T PCSSResource>

- in l ineStyleResources: List<CSSResource>

- im ageResources: L ist<HT T PIm ageResource>

- ob jectResources: List<HT T PObjectResource>

- l inkedResources: List<HT T PResource>

- m okiDocum ent: Docum ent

+ getM okiDocum ent() : Docum ent

- bu i ldM okiDocum ent() : Docum ent

-resul ts

-preprocessor

-preprocessorResu l ts

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Another possible method is getMokiDocument(). This method (that internally uses the previous one
-getPreprocessorResults()-) is to build the intermediate document. Note that the method on charged of
doing that task is, at the end, buildMokiDocument() of PreprocessorResults class.

Developer Manual, page 12 of 26

Illustration 3: Sequence Diagram for the getPreprocessorResults method

sd getPreprocessorResults Message

:Tester :Preprocessor «prim ary docum ent»

:HTTPXHTMLResource

:PreprocessorResults

T he m ethods for extracting

external and em bedded CSS

(extractCSS and

extractEm beddedCSS) also are

on charge of recovering another

CSS stuff that could be

im ported from each CSS

resource.

T he HTT PIm ageResources are

bui l t not only wi th extracted

Im ages from m ain docum ent

(List<URI>) but wi th possible

im ages from CSS or objects

User

PreprocessorResul ts:= getPreprocessorResul ts()

preprocess()

create(URI)

List<HTT PCSSResource>:= extractCSS(List<URI>)

List<URI>:= getExtractedCSS()

List<String>:= getEm beddedCSS()

List<Em beddedCSSResource>:= extractEm beddedCSS(List<String>)

List<String,Integer>:= getInl ineCSS()

List<Inl ineCSSResource>:= extractInl ineCSS(List<String ,Integer>)

List<URI>:= getExtractedIm ages()

List<HTT PIm ageResource>:= bui ldCom pleteIm ageL ist()

List<URI>:= getExtractedLinks()

List<HTT PResource>:= extractLinks(List<URI>)

List<URI>:= getExtractedObjects()

List<HTT PObjectResource>:= extractObjects(List<URI>)

setExternalStyleResources(List<HT T PCSSResource>)

setEm beddedStyleResources(List<Em beddedCSSResource>)

setIn l ineStyleResources(L ist<Inl ineCSSResource>)

setImageResources(List<HT TPIm ageResource>)

setObjectResources(List<HTT PObjectResource>)

setLinkedResources(List<HT TPResource>)

getPreprocessorResul ts()

getPreprocessorResul ts()

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4.3 Main classes involved in test implementation phase

The classes involved in this phase are the ones related to the implementation of mobileOK Basic 1.0
Tests and to the results generated by these tests.

4.3.1 Static View

4.3.1.1 Results of the library

Illustration 5 Represents the main classes related to the generation of the results output by the checker.

Developer Manual, page 13 of 26

Illustration 4: Sequence Diagram for the getMokiDocument method

sd getMokiDocument

:Tester :PreprocessorResults

User

consider getPreprocessorResults Sequence Diagram

Docum ent:= getM okiDocum ent()

Preprocesso rResu l ts:= ge tPreprocesso rResu l ts()

getM okiDocum ent()

bu i ldM okiDocum ent()

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

● Tester

The main class in the library exposes two methods for launching the tests. It exposes a
runTests() method that runs all the tests, or, runTest() which runs just one test. Both

methods return TestsResults/TestResult respectively containing the output of the tests. These
objects are used for building the result document.

● TestType

It is an enumeration of all test types.

● TestResults/TestResult

Returned by runTests() and runTest() respectively, they encapsulate the results of

many tests and one test, respectively. TestResults includes many TestResult instances. These
objects include test outcome, warnings, and information.

● TestOutcome

It is an enumeration of the the two tests outcomes, PASS and FAIL. On the other hand, one

test with PASS outcome can have additional WARN outcomes.

● TestException

This is the exception that is thrown if something goes wrong in the tester. This can be both
something internal to the library as an external problem (for example a problem accesing the
input document).

Developer Manual, page 14 of 26

Illustration 5: Main classes involved in Test Implementation phase

cd basic

Tester

{leaf}

- preprocessor: Preprocesso r

- preprocessorResults: PreprocessorResul ts

+ T ester(Fi le)

+ T ester(URI)

+ runT ests() : T estResul ts

+ runT ests(T estT ype) : T estResults

+ getPreproccesorResu lts() : Preprocesso rResul ts

«enum eration»

TestOutcome

+ «enum eration» PASS:

+ «enum eration» WARN:

+ «enum eration» FAIL:

TestResult

{leaf}

- type: T estT ype

- outcom e: T estOutcom e

- subResults: L ist<T estSubResul t>

~ T estResult(T estT ype)

+ getT ype() : T estT ype

TestResults

{leaf}

- ove ral lOutcom e: T estOutcom e

- m okiURI: URI

- resultsL ist: L ist<T estResul t>

- resultsM ap: M ap<T estT ype, T estResu lt>

- testResul tsDOM : Docum ent

~ T estResul ts()

- bui ldT estResu ltsDOM () : Docum ent

«enum eration»

TestType

+ «enum eration» AUT O_REFRESH_REDIRECT ION:

+ «enum eration» CACHING:

+ «enum eration» CHARACT ER_ENCODING_SUPPORT :

+ «enum eration» CONT ENT _FORM AT _SUPPORT _AND_VAL ID_M ARKUP:

+ «enum eration» DEFAULT _INPUT _M ODE:

+ «enum eration» EXT ERNAL_RESOURCES:

+ «enum eration» GRAPHICS_FOR_SPACING:

+ «enum eration» IM AGE_M APS:

+ «enum eration» IM AGES_RESIZING_ IM AGES_SPECIFY_SIZE:

+ «enum eration» LARGE_GRAPHICS:

+ «enum eration» LINK_T ARGET _FORM AT :

+ «enum eration» M EASURES:

+ «enum eration» M INIM IZE:

+ «enum eration» NO_FRAM ES:

+ «enum eration» NON_T EXT _ALT ERNAT IVES:

+ «enum eration» OBJECT S_OR_SCRIPT :

+ «enum eration» PAGE_SIZE_L IM IT :

+ «enum eration» PAGE_T IT LE:

+ «enum eration» POP_UPS:

+ «enum eration» PROVIDE_DEFAULT S:

+ «enum eration» SCROLLING:

+ «enum eration» ST YLE_SHEET S_SUPPORT :

+ «enum eration» ST YLE_SHEET S_USE:

+ «enum eration» T ABLES_ALT ERNAT IVES:

+ «enum eration» T ABLES_LAYOUT :

+ «enum eration» T ABLES_NEST ED:

- im plem entations: M ap<T estT ype, T estIm p lem entation>

~ ge tIm plem entation(T estT ype) : T estIm plem enta tion

-outcom e

-type

produces

produces

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4.3.1.2 Implementation of the tests

In the following diagram (Illustration 6), the main classes regarding tests implementation can be
observed.

● TestImplementation

This is the top interface for all mobileOK tests. The interface method is runTest(). This

method runs on the intemediate document object (the output of preprocessing phase) and
produces a TestResult object.

● AbstractTestImplementation

This class defines one method that should be implemented in the derived classes [TestResult
runTest(PreprocessorResults)]. Additionaly, it provides a utility method (used by derived
classes) that builds a TestResult object from a DOM node. [TestResult runTest(Node)]

● AbstractXSLTTestImplementation

This abstract class has the responsability of applying the XSL transformations against the
intermediate document and producing a TestResul object. The stylesheet applied depends on
the specific test implementation that calls this method.

This is the approach for most tests unless CSS related ones. For example, in the next diagram
two concrete test implementations as Caching and TablesNested are showed.

Note that some helper methods in order to fulfill the test are included in it (as it can be seen in
the Caching Test)

Developer Manual, page 15 of 26

Illustration 6: Test Implementation Inheritance

cd basic

AbstractCSSTestImplementation

- exte rna lS tyleshee tsExpr: XPa thExpression

- em beddedStylesheetsExpr: XPa thExpression

- in l ineStyleExpr: XPa thExpression

~ genera teResu l tsOnCSSConten t(PreprocessorResu l ts, S tring) : Docum ent

- evalua teCSSErro rs(String, S tri ng , i n t) : L i st<T estErro rInfo>

~ findTestErrors(S tring) : L ist<TestErro rIn fo>

+ runT est(PreprocessorResu l ts) : T estResu l t

AbstractTestImplementation

+ runT est(PreprocessorResul ts) : T estResu l t

+ runT est(Node) : T estResul t

AbstractXSLTTestImplementation

- transform er: T ransfo rm er

+ runT est(PreprocessorResul ts) : T estResu l t

« in te rface»

TestImplementation

~ getTestType() : TestType

~ runTest(PreprocessorResul ts) : TestResu l t

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

● AbstractCSSTestImplementation

As it was said, currently CSS tests do not follow a declarative approach because CSS stuff is
not serialized in the intermediate document. Except CSS stuff embedded in the markup of the
main XHTML, all the CSS is kept in moki in a raw format (External or imported stylesheet).
Because of that, CSS tests are managed in a different way.

First of all, this class has several XPath expressions in order to access the parts of the moki
where external, embedded or inline CSS are present. Then, each CSS piece is validated
against the current CSS test implementation, through a regular expression. The output of
these regular expressions is used to build the Test Result object.

Developer Manual, page 16 of 26

Illustration 7: XSLT Test implementation

cd basic

AbstractXSLTTestImplementation

- transform er: T ransform er

+ runT est(PreprocessorResul ts) : T estResu l t

CachingTest

{lea f}

+ getT estT ype() : T estT ype

+ isCanonicalCacheControlVa lue(String) : boo lean

+ checkConsistentNewRequest(String, String , String, String) : boolean

TablesNestedTest

{lea f}

+ getT estT ype() : T estT ype

«resource»

XSLT

In this h i rarchy

there would be

al l m obi leOK

Basic tests except

CSS re lated ones.

«use»

Illustration 8: CSS Test Implementation

cd basic

AbstractCSSTestImplementation

- externalStylesheetsExpr: XPathExpression

- em beddedStylesheetsExpr: XPathExpression

- inl ineStyleExpr: XPathExpression

~ generateResul tsOnCSSContent(PreprocessorResul ts, String) : Docum ent

- evaluateCSSErrors(String, String, in t) : L ist<T estErrorInfo>

~ findTestErrors(String) : List<TestErrorInfo>

+ runT est(PreprocessorResul ts) : T estResul t

MeasuresTest

{leaf}

- m easuresPattern: Pattern = Pattern.com pi le...

+ getT estT ype() : T estT ype

~ findT estErrors(String) : L ist<T estErrorInfo>

StyleSheetsSupportTest

{leaf}

- cssSupportPattern: Pattern = Pattern.compi le...

+ getT estT ype() : T estT ype

~ findT estErrors(String) : List<T estErrorInfo>

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

4.3.2 Dynamic View

Illustration 9 represents the dynamic diagram for the runTests() method from Tester class. Note that,
for each test received in an array of TestType, the following steps are taken:

● First of all, it is obtained the implentation class for the specific TestType. This class will be a
child from either AbstractXSLTTestImplementation or AbstractCSSTestImplementation.

● Then, the method runTest() from the implemtation class is launched.

● The result (of TestResult type) is saved in an array of TestsResults.

● After the loop, the TestResults array is returned.

4.3.3 Some notes about XSLT

XSLT processing is fulfilled through the use of native Java interfaces (i.e. javax.xml.transforms.*), but
Saxon library is used as implementation. Two reasons for choosing Saxon is the ability to:

● compile the stylesheets in order to improve the performance.

● obtain the line of given node in a DOM tree. This is useful to provide feedback to the user
about the origin or cause of an error. These lines reference a location inside the moki
document.

In general XSLT tests use XPath expressions for accessing the relevant parts in moki document. The
templates also produce a node result for easy building of the Java Test Result object.

4.4 JUnit Tests

The W3C mobileOK Checker has been developed using the JUnit Tests Framework. The overall
design/behaviour of the test cases for the mobileOK 1.0 Tests Checker library is the following:

Developer Manual, page 17 of 26

Illustration 9: Sequence Diagram for the runTests method

sd runTests

User

:Tester «enum eration»

:TestType

« in terface»

:TestImplementation

:TestsResults

loop

T estResul ts:= runT ests(T estT ype[])

T estIm plem enta tion:= getT estIm plem entation(T estT ype)

T estResu l t:= runT est(PreprocessorResu l ts)

add(T estResul t)

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

● The input for the tests is a Web resource with additional images and stylesheets. On top of
that, it is needed to provide the expected moki and results XML documents.

● These resources are exposed locally through an embedded Tomcat. One given test case will
use this local host as the URI parameter to the checker library. Once the checker library is
executed, the produced moki and results documents are compared to the expected ones. If both
archives are identical, the test case will succesfully pass. Otherwise, the differences will be
reported and the test will fail.

4.4.1 Executing JUnit tests

This section explains how to launch the JUnit tests created in the project, included in the source code
in the CVS.

From Eclipse IDE

Examples are made following the steps needed in Eclipse IDE in order to execute the tests.

● Launch a new run configuration (Run option in Run menu).

● Introduce as main class org.w3c.mwi.mobileok.basic.OneTestTest

Developer Manual, page 18 of 26

Illustration 10: Execution of a JUnit test: main class

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

● Enter, as program arguments, one of the mobileOK tests in the format specified in the section
3.1.2 of the mobileOK Checker 1.0b User Manual. The JUnit test for the specified mobileOK
test will be launched. If no mobileOK test is specified, all tests will be launched. It is possible
to execute a specific subtest for a given test. For example, in the following illustration, the
execution of subtest AUTO_REFRESH-1 is showed.

From Ant Tool

It is possible to use the Ant tool for executing JUnit tests. From the project root directory (where is
located the build.xml file, which is necessary for Ant tool to run), simply type “ant test”. This will
launch an Ant task, called “test”, that will execute all tests.

4.4.2 Notes on how the tests are written

Test cases are located under the "tests/data" directory in the project. There is a directory for each
mobileOK test (e.g. PageSizeTest) and a subdirectory for each test case (e.g. "1", "2", "3", etc.). Note
that creating a test is just a matter of creating another such subdirectory.

Within each directory, the following archives are found:

● index.xhtml: the main document to be tested.

● moki.xml : the expected moki document output from the checker.

● testresults.xml : the expected test results document

It is also possible to include other files, such as stylesheets and images. They will all be served to the
checker as expected. (i.e, it is possible to include as much images or stylesheets referenced from
index.xhtml as needed)

Developer Manual, page 19 of 26

Illustration 11: Execution of a JUnit test (program arguments)

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Note that for each file 'foo' it is possible to include a companion file called 'foo.headers' which lists the
HTTP headers which should be sent when serving that file. This is needed for tests that need to check
for particular header values. These are just text files with one header name/value pair per line, such us:

● Content-Type: application/xhtml+xml

● Cache-Control: public

● ...

The execution of a given test will produce, at the end, the comparison between the expected moki.xml
and testresult.xml and the real ones obtained. For that reason, the possible erros are reported in terms
of the differences between both kind of documents.

4.5 Implementation Decisions

All classes are in the same package org.w3c.mwi.mobileok.basic. On the other hand, most methods
have visibility at package level. This decision -together with the fact that most classes are final- is due
to the fact that the project has very specific requirements and it was not designed to be extended at
code level.

Additionally, a third party could create a software tool that might process the moki document for its
own purposes, as that document contains a lot of useful information valuable for an external piece of
software.

4.6 Third-parties software

This section is just a reminder of the most important third parties used inside the library to fullfill tasks
such as image or markup validation among others.

● CSS Validator: This library is used to validate CSS stuff.

● HTTPClient: Library for management of HTTP connections.

● JHove: Used for image (JPEG or GIF) validation.

● TagSoup: This tidying tool is used to clean the markup before building the DOM tree.

● Saxon: This XSLT processor is used for two purposes. First of all, this library provides a
method to obtain the line of given node in a DOM tree. On the other hand, it has a feature to
compile the stylesheets being used in order to improve the performance.

5 Cookbook
This section introduces some common usages of the library.

Developer Manual, page 20 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

5.1 Basic Java Usage

This first code snippet represents the launching of all the tests against a given site.Once the results are
obtained, it would be possible to process the results DOM tree, for example in order to print it to the
common output.

URI uri=new URI("http://www.mymobilesite.com");

Tester tester = new Tester(uri);

TestType[] testTypes;

//all tests will be passed

testTypes = TestType.values();

TestResults results = tester.runTests(testTypes);

//Process the Result DOM. For example printing it to the common output

printResults(results.getTestResultsDOM());

5.2 Setting Additional Headers

This example sets specific HTTP request headers. Although it is possible to define every header of the
request, it is important to be aware that if the Default Delivery Context related headers are overriden
the results will not be mobileOK Basic compliant.

// Setting an additional value for an HTTP Accept-language header. It is possible to

// define values for any header in an HTTP request.

// Be aware that if Default Delivery Context related headers are overriden by this

// configuration, the results will not be valid from the point of view of the

// mobileOK Basic Tests

Map<String,String> myAdditionalHeaders = new HashMap<String,String>();

myAdditionalHeaders.put("Accept-Language", "ja");

Map<String,Object> configMap = new HashMap<String,Object>();

configMap.put(TesterConfiguration.HTTP_REQUEST_HEADER_OVERRIDES_KEY,

myAdditionalHeaders);

TesterConfiguration config = new TesterConfiguration(configMap);

TesterConfiguration.setConfiguration(config);

//...Usual basic usage like previous example

5.3 Using moki document for other purposes

In the follwing example a possible usage of the moki document for other purposes than the mobileOK
Basic Tests is introduced. This sample is about a hypothetical scenario in which a third party is
interested in knowing if a given Web page has broken links or not.

Once the moki document is obtained, a suitable XPath expression for locating broken links is needed
(This example uses XPath expressions from Java. It would be possible to use a declarative approach
such as a XSLT based one)

Developer Manual, page 21 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

Note how this is fullfilled through the access to the HTTPResponse blocks of each link in the moki
document. On top of that, the last sucessful response is needed (in order to avoid possible
redirections). Finally, there is a status header which keeps the code of the responder and it is exactly
what is needed.

URI uri=new URI("http://www.mymobilesite.org");

Tester tester = new Tester(uri);

//Obtaining the moki document

Document moki = tester.getPreprocessorResults().getMokiDocument();

//Proper initialization of XPATH expressions

XPathFactory factory = XPathFactory.newInstance();

XPath xpath = factory.newXPath();

//Fix an appropiate namespaces for the moki

xpath.setNamespaceContext(new MokiNamespaceContext());

XPathExpression BROKEN_LINKS;

//A suitable XPath expression is needed

BROKEN_LINKS = xpath.compile("/moki:moki/moki:links/moki:link/" +

"moki:retrieval/moki:HTTPResponse[last()]/moki:status[@code!='200']");

Boolean result=(Boolean)BROKEN_LINKS.evaluate(moki, XpathConstants.BOOLEAN);

One important issue is to properly set the namespaces of the moki to the XPath expression. The
following class takes care of that.

public class MokiNamespaceContext implements NamespaceContext {

private Map<String, String> prefixMap;

 public MokiNamespaceContext() {

 this.prefixMap = new HashMap<String, String>();

 prefixMap.put("moki", "http://www.w3.org/2007/05/moki");

 prefixMap.put("xml", XMLConstants.XML_NS_URI);

 }

 public String getNamespaceURI(final String prefix) {

 if (prefixMap.containsKey(prefix)) {

 return prefixMap.get(prefix);

 } else {

 return XMLConstants.NULL_NS_URI;

 }

 }

 // There is no need for implementing other methods of interface

}

Developer Manual, page 22 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

6 Extending the library
As it was pointed out in Implementation Decisions, it is possible to extend the library using the
intermediate document. It contains a lot of information about a Web Resource in general, and a new
project could be built on top of it. For more information about the moki document formar, please see
the mobileOK Checker 1.0b User Manual.

7 Identified improvements and extensions

7.1 CSS in XML

One initial requirement was having CSS serialized inside moki document. But, due to time constraints
and not being a trivial task, this requirement was not accomplished.

However, a project for this purpose was begun with the effort of some members of the checker task
force. The project, called Representation of CSS in XML, can be found in W3C CVS Repository. It is
experimental code and has several things to do. Everyone interested in it can contribute to its
refinement.

7.2 Encapsulating third-parties software in moki

Moki intermediate document has several parts with information messages that come from third-parties
software. These parts are:

• Tidy tool output.
• XHTML Grammar validity.
• CSS Grammar validity.
• Images validity.

It is desirable to have intermediate document messages not coupled to specific third-parties software.
This approach would be implemented by having moki proper message codes (or better groups of
them) and mappings between third-parties' and mobileOK Tests Checker's. This way, it would be
easier to replace a tool or to implement the internationalization of messages.

However, this approach is not easily applicable as none of the tools being used has a message
management that satisfies the needs just commented. Two possible solutions were analyzed:

1. Modify the tools in order to fullfill messages codes (and internationalization and so on -The
next option is implicit-).

2. Modify the tools in order to make them internationalizables (using properties files) and in this
way make it possible to select a language for moki (e.g we could have an Spanish moki with
messages of third parties in Spanish, and so on).

Perhaps a better solution would be a combination of both of them. Note that, in some cases, it is not
even possible to include any kind of messages.

Developer Manual, page 23 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

As the messages handling in tools are very heterogeneous, a reasonable solution would be the
treatment of each tool in a separate way. This would not be the best solution in all cases but a tradeoff
between development agility and code quality.

More information on this can be found in the document ThirdParties.

8 Known issues

8.1 About W3C mobileOK Checker 1.0b

The development of the tool is alive. Please do not hesitate to send your comments to the mobileOK
Checker Task Force mailing list (public-mobileok-checker@w3.org). Your feedback is very important
for the authors of W3C mobileOK Checker 1.0b so this software can be improved. Optionally, you can
access the bug tracker of the Checker at http://www.w3.org/Bugs/Public/ and help W3C developing
this tool.

8.2 About this Developer Manual

● General issues: Review and improve wording all across the document.

Developer Manual, page 24 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

9 References
NOTE: When referring a W3C document, the version of the document that has been considered at this
version of the W3C mobileOK Checker User Manual appers in this section. Additionally, the URI to
the latest version of such document is offered between square brackets.

(1) W3C mobileOK Basic Tests 1.0, http://www.w3.org/TR/2007/WD-mobileOK-basic10-
tests-20070928/. W3C Candidate Recommendation 30 November 2007. Editors: Sean Owen
(Google) and Jo Rabin (dotMobi) [latest version: http://www.w3.org/TR/mobileOK-basic10-
tests/].

(2) W3C Mobile Web Best Practices (Basic Guidelines) 1.0, http://www.w3.org/TR/2006/PR-
mobile-bp-20061102/. W3C Proposed Recommendation 2 November 2006. Editors: Jo Rabin
(dotMobi) and Charles McCathieNevile -early drafts- (Opera Software) [latest version:
http://www.w3.org/TR/mobile-bp/].

(3) W3C License, http://www.w3.org/Consortium/Legal/2002/copyright-software-20021231.

(4) W3C Mobile Web Best Practices working group, http://www.w3.org/2005/MWI/BPWG/.

(5) W3C Mobile Web Initiative, http://www.w3.org/Mobile/.

(6) XML Schema for the mOKI document format, http://dev.w3.org/cvsweb/2007/mobileok-
ref/moki/schema/moki.xsd. Editor: Jo Rabin (dotMobi). HTML version available at
http://dev.w3.org/cvsweb/2007/mobileok-ref/moki/schema/moki.xsd.html.

(7) Representation of CSS in XML, http://dev.w3.org/cvsweb/2007/cssxml/. Editor: Jo Rabin
(dotMobi).

(8) mobileOK Checker 1.0b User Manual, http://dev.w3.org/cvsweb/2007/mobileok-
ref/mobileOK-Basic-RI-1.0-UserManual.pdf [latest version]. Editors: Ignacio Marín and Abel
Rionda (Fundación CTIC). Version available at release time of this document:
http://dev.w3.org/cvsweb/2007/mobileok-ref/mobileOK-Basic-RI-1.0-UserManual.pdf?
rev=1.4&content-type=text/x-cvsweb-markup.

(9) CSS Validator, http://jigsaw.w3.org/css-validator/DOWNLOAD.html. World Wide Web
Consortium.

(10)CSS, Cascading Style Sheets, level 1, http://www.w3.org/TR/REC-CSS1. W3C
Recommendation 17 Dec 1996 (revised 11 Jan 1999). Editors: Håkon Wium Lie and Bert Bos.

(11) JUnit Tests Framework, http://www.junit.org/.

Developer Manual, page 25 of 26

W3C mobileOK Basic Tests 1.0 Checker (Beta Release)

(12) Ant, http://ant.apache.org/. The Apache Software Foundation.

(13) HTTPClient, http://hc.apache.org/httpclient-3.x/. The Apache Software Foundation.

(14)JHove (JSTOR/Harvard Object Validation Environment), http://hul.harvard.edu/jhove/.
Copyright 2003-2007 by JSTOR and the President and Fellows of Harvard College.

(15)TagSoup, http://ccil.org/~cowan/XML/tagsoup/.

(16)Saxon, http://saxon.sourceforge.net/. The XSLT and XQuery Processor.

(17)ThirdParties, http://docs.google.com/Doc?docid=dhbw7zt7_0f8w6bq. A study of Third-
Parties software considered useful to be reused in the implementation of the mobileOK Tests
1.0 Checker. Editors: Miguel García and Abel Rionda (Fundación CTIC).

(18)W3C CVS Repository for mobileOK Checker, http://dev.w3.org/cvsweb/2007/mobileok-ref/

10 Acknowledgements

W3C mobileOK Checker 1.0b is the result of the effort of several organizations. In alphabetical order,
the members of the W3C mobileOK Checker Task Force (taking place within the W3C Mobile Web
Best Practices working group) who contributed to the creation of this software tool and its
documentation are:

● Roland Gülle (Sevenval)

● Miguel García (Fundación CTIC)

● Dominique Hazäel-Massieux (W3C)

● Laura Holmes (Google)

● Ignacio Marín (Fundación CTIC)

● Ruadhan O'Donoghue (dotMobi)

● Sean Owen (Google, Task Force leader)

● Jo Rabin (dotMobi)

● Abel Rionda (Fundación CTIC)

Developer Manual, page 26 of 26

